Ecuaciones alométricas para la estimación de la biomasa en la parte aérea de la vegetación: caso de algunas especies de coníferas en la localidad de San Juan Cuauhtémoc, Tlahuapan, México.

TESIS

Que para obtener el grado de:

Maestro en Ciencias Ambientales

Presenta:

Omar Andrés González Iturbe

Director de tesis:

Dra. Gladys Linares Fleites

Codirector

Dr. José Víctor Tamariz Flores

Tutora

Dra. Edith Chávez Bravo

Integrante Comité Tutorial

Mtro. Sergio Martín Barreiro Zamora

Integrante Comité Tutorial

Dra. María Teresa Zayas Pérez

Puebla, Puebla 1 diciembre del 2019
Agradecimientos

Agradezco al posgrado en ciencias ambientales del Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla

Al Consejo Nacional de Ciencia y Tecnología (CONACYT)

Por la beca que me brindo para la realización del presente trabajo.
A mis padres, Miguel Ángel González Flores y María Maricela Iturbe López
Gracias por su apoyo incondicional

A mi hermano Miguel Ángel González Iturbe
Gracias por el conocimiento que me compartes

A Mariana Gálvez Genis
Gracias por el apoyo y el tiempo brindados
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introducción</td>
<td>7</td>
</tr>
<tr>
<td>II. Marco de referencia</td>
<td>8</td>
</tr>
<tr>
<td>2.1. Carbono y el calentamiento global</td>
<td>8</td>
</tr>
<tr>
<td>2.2. Secuestro de carbono, fotosíntesis y producción de biomasa</td>
<td>9</td>
</tr>
<tr>
<td>2.3. Importancia de la estimación de la biomasa de ecosistemas forestales</td>
<td>10</td>
</tr>
<tr>
<td>2.4. Planeación para la estimación de la biomasa</td>
<td>12</td>
</tr>
<tr>
<td>2.5. Estimación de la biomasa</td>
<td>12</td>
</tr>
<tr>
<td>2.5.1. Método directo</td>
<td>12</td>
</tr>
<tr>
<td>2.5.2. Métodos indirectos</td>
<td>13</td>
</tr>
<tr>
<td>2.5.3. Ecuaciones alométricas</td>
<td>13</td>
</tr>
<tr>
<td>III. Justificación</td>
<td>18</td>
</tr>
<tr>
<td>IV. Pregunta de investigación</td>
<td>18</td>
</tr>
<tr>
<td>V. Hipótesis</td>
<td>18</td>
</tr>
<tr>
<td>VI. Objetivos</td>
<td>19</td>
</tr>
<tr>
<td>6.1. Objetivo general</td>
<td>19</td>
</tr>
<tr>
<td>6.2. Objetivos específicos</td>
<td>19</td>
</tr>
<tr>
<td>VII. Metodología</td>
<td>19</td>
</tr>
<tr>
<td>7.1. Zona de estudio</td>
<td>19</td>
</tr>
<tr>
<td>7.1.1. Naturaleza</td>
<td>19</td>
</tr>
<tr>
<td>7.1.2. Sociedad</td>
<td>22</td>
</tr>
<tr>
<td>7.1.3. Registros de especies de coníferas reportados en los bienes comunales de San Juan Cuauhtémoc</td>
<td>22</td>
</tr>
<tr>
<td>7.1.4. Obtención de las ecuaciones alométricas para las especies de coníferas presentes en San Juan Cuauhtémoc Tlahuapan</td>
<td>23</td>
</tr>
<tr>
<td>7.1.5. Selección de ecuaciones alométricas</td>
<td>24</td>
</tr>
</tbody>
</table>
7.1.6. Identificación de las especies de coníferas presentes en un terreno de bien comunal de la localidad de San Juan Cuauhtémoc, Tlahuapan ... 24

7.1.7. Estimación de la biomasa por parcela ... 24

7.1.8. Identificación de las especies de coníferas que producen mayor cantidad de biomasa .. 25

7.2. Simulación de pseudo datos .. 25

VIII. Resultados y discusión .. 27

8.1. Situación económica y laboral de los propietarios de los bienes comunales 27

8.2. Inventario de ecuaciones alométricas presentes en la localidad de San Juan Cuauhtémoc, Tlahuapan ... 29

8.3. Especies identificadas en campo en un terreno bien comunal de San Juan Cuauhtémoc, Tlahuapan ... 32

8.4. Ecuaciones seleccionadas y estimación de la biomasa 33

8.5. Estimación de la biomasa por parcelas ... 33

8.6. Simulación de valores de biomasa dados los valores de DAP 39

IX. Conclusión ... 43

X. Anexo A ... 44

10.1. Análisis de problemas de nomenclaturas en el uso de inventarios forestales: resultados obtenidos para el municipio de Tlahuapan .. 44

10.1.1. Aspectos teóricos ... 44

10.1.2. Aspectos metodológicos ... 47

10.1.3. Resultados .. 49

XI. Anexo B ... 53

XII. Anexo C .. 64

12.1. Parcela 1 .. 64

12.2. Parcela 2 .. 65

12.3. Parcela 3 .. 67

12.4. Parcela 4 .. 68
I. Introducción

De acuerdo con Azcón-Bieto y Talón (2013) la biomasa de un árbol es el producto final de los productos bioquímicos que se dan por el proceso de la fotosíntesis, el cual comienza con el uso de dióxido de carbono (CO₂), agua (H₂O), los nutrientes, y la energía del sol. La biomasa está constituida aproximadamente hasta en un 50% de carbono (C) (Garzulga y Saket, 2003).

La estimación de la biomasa aérea de los árboles tiene diferentes aplicaciones. De acuerdo con Burslem y Ledo (2015) y Rojas-Garcia, Jong De, Martínez-Zurimendi y Paz-Pellat (2015) algunas de las aplicaciones son:

- Estimación de la biomasa de ecosistemas forestales a partir de la información existente en los inventarios forestales.
- Cuantificación del volumen, biomasa y carbono empleando métodos destructivos
- Estimaciones de volumen, biomasa y carbono de árboles a partir del empleo de ecuaciones alométricas, para conocer la productividad de los ecosistemas forestales con el fin del aprovechamiento de los recursos maderables, tomando en cuenta la densidad de las especies de árboles por unidad de área y el tamaño de la población para cada especie.
- Conocimiento del rol de la biomasa en los ciclos biogeoquímicos del carbono, nitrógeno fosforo, azufre etc.
- Cuantificación y estimación de la cantidad de carbono que los árboles secuestran en su biomasa, a través del empleo de métodos destructivos o no destructivos.

Se sabe que los estudios que fueron realizados para estimar la biomasa, un 76% se hicieron en bosques naturales o seminaturales, un 19% en bosques degradados y un 2% en bosques talados (Burslem y Ledo, 2015). Estos porcentajes muestran una clara tendencia a realizar los estudios en ecosistemas forestales conservados o semi/conservados, como los existentes en las áreas naturales protegidas; lo que pudiera deberse a que los ecosistemas forestales conservados o semi/conservados tienen gran importancia para la conservación de la biodiversidad, el amortiguamiento de los cambios ambientales y por proveer servicios ambientales y ecosistémicos.

Una parte de los estudios de estimación de la biomasa en ecosistemas forestales tienen como finalidad la estimación del carbono secuestrado en los árboles, con el fin de participar en los programas de pagos por servicios ambientales, los cuales son útiles para el desarrollo económico.
de aquellas personas a quienes beneficia, para la protección de la biodiversidad, la conservación de los recursos naturales y también como parte de las medidas de mitigación ante el calentamiento global (Carrillo, Acosta, Jiménez, González, y D., 2016; Guzmán, Laguna, y Martínez, 2004; Herrero, 2010; United Nations [ONU], 1998). Debido a su importancia estos estudios han sido promovidos por la Convención Marco de las Naciones Unidas, United Nations Framework Convention of Climate Change (UNFCCC) por sus siglas en inglés, que establece que los países deben informar regularmente el estado de sus recursos forestales, así como la cantidad de biomasa y de C que tienen y sus reservas (UNFCCC, 2008).

Históricamente, los estudios de estimación de la biomasa se han hecho a través del uso de dos metodologías; una directa que es destructiva y otra indirecta que no es destructiva (Ruiz-Díaz, Rodríguez-Ortiz, Leyva-López, y Enríquez-del Valle, 2007). En la metodología no destructiva se ha hecho uso de ecuaciones alométricas, sistemas de información geográfica y más recientemente de la tecnología lidar, aunque, cada método tiene sus ventajas y desventajas son las ecuaciones alométricas la que más frecuentemente se usan (Ruiz-Díaz et al., 2007). Sin embargo, aún existen problemas en el uso de las ecuaciones alométricas como problemas de propagación de errores y la falta de estimación de la incertidumbre cuando se emplean ecuaciones ya creadas, por lo que es necesario corregir dichos problemas.

II. Marco de referencia

2.1. Carbono y el calentamiento global

El C es un elemento que se puede combinar con nitrógeno (N), fósforo (P), azufre (S), oxígeno (O₂) e hidrogeno (H) para formar moléculas esenciales para los organismos vivos. Al igual que otros elementos de la naturaleza el C tiene un ciclo, por lo que debe estar en circulación constante a nivel molecular, organístico, ecosistémico, ambiental y global. El ciclo del C comprende la unión molecular con el O₂, lo que da como resultado dióxido de carbono (CO₂). El CO₂ es un gas importante en la composición de la atmósfera que aumentó su concentración a 3% debido a la gran actividad volcánica hace miles de millones de años; junto con el vapor de agua y otros elementos químicos transformaron la energía solar en calor, lo que aumento la temperatura global a 33° grados, y consecuentemente provocó el fenómeno conocido como calentamiento global, que favoreció la existencia de la vida (Jaramillo, 2007; Lovelock, 1988; Schlesinger, 1997). Aunque, el calentamiento global es un fenómeno físico natural que mantiene la temperatura favorable en el planeta tierra para
la existencia de la vida, en las últimas décadas se ha elevado la temperatura global como consecuencia del incremento en las concentraciones de los gases de efecto invernadero (GEI) como el CO₂, metano (CH₄), óxido nitroso (N₂O) y ozono (O₃), de los que el CO₂ es el principal. El incremento en las concentraciones de los GEI se debe en parte a la actividad humana como la quema de combustibles fósiles, la tala de árboles y el cambio de uso de suelo (Carrillo et al, 2016; Herrero, 2010; y Intergovernmental Panel on Climate Change [IPCC], 2007). Como consecuencias del aumento de la temperatura global ocurren afectaciones en la abundancia y distribución de especies; la sobrevivencia de diferentes especies de seres vivos; la disponibilidad y producción de recursos; la distribución de las precipitaciones y permanencia de los cuerpos de agua; y las alteraciones de productividad alimentaria y fertilidad de los suelos. Para mitigar el impacto del calentamiento global y el cambio climático las Naciones Unidas 1998, por sus siglas en inglés United Nations, propusieron en el protocolo de Kyoto de 1997 las medidas estratégicas para disminuir las emisiones de los GEI a la atmósfera, las cuales contemplan el incremento de los sumideros terrestres naturales de carbono (Carrillo et al, 2016; Guzmán, Laguna, y Martínez, 2004; Segura y Andrade, 2008; United Nations [ONU], 1998; United Nations Framework Convention on Climate Change, n.d).

2.2. Secuestro de carbono, fotosíntesis y producción de biomasa

El secuestro de carbono es la absorción el CO₂, disponible en la atmósfera, a través de las estomas presentes en los organismos autótrofos conocidos como fotoergónicos o fotosintéticos. Además de la capacidad que tienen los organismos autótrofos para absorber CO₂ también pueden absorber energía luminosa proveniente de sol a través de las hojas y de C, H y elementos minerales a través de las raíces, con lo cual producen biomasa y liberan O₂ a la atmósfera durante el proceso de fotosíntesis (Azcón-Bieto y Talón, 2013; Herrero, 2010; Maji, Das, y Mukherjee, 2017; y Taiz y Zeiger, 2002).

En el proceso de la fotosíntesis se diferencian dos fases: la fotoabsorción de la energía y la fotoasimilación de los elementos esenciales (Azcón-Bieto y Talón, 2013; Taiz y Zeiger, 2002).

En la fase de foto/absorción la energía solar se convierte en energía electroquímica, este proceso se inicia con la absorción de la luz llevada en los complejos de pigmento/proteína, que se denominan antenas (cosechadoras) de luz, tales como la clorofila y los carotenoides (moléculas cromóforas sensibles a la radiación luminosa). Consecuentemente en el proceso se presenta una canalización de la energía de los fotones hacia los centros de reacción de los fotosistemas, donde la energía se
transforma en una corriente de electrones entre moléculas oxido/reductoras. Las reacciones de oxido/reducción producen, en último término, dos biomoléculas estables nicotinamida/adenina/dinucleótido/fosfato (NADPH) y adenosín trifosfato (ATP) que son acumulables y útiles como fuente de energía asimiladora, ya que proporcionan poder de reducción y de enlace respectivamente; estas biomoléculas serán necesarias para una fase posterior (Azcón-Bieto y Talón, 2013; Taiz y Zeiger, 2002). Posteriormente, en la fase de fotoasimilación se suceden una serie de reacciones de asimilación de elementos necesarios para la construcción biomolecular, tales como el C, H, O₂, N y S, y de los que el C (obtenido a partir del CO₂) es el elemento más esencial y requerido para la construcción de la materia orgánica, en cuanto a que representa aproximadamente hasta un 50% de la biomasa que produce un organismo vivo.

Los productos que resultan de la fotosíntesis son carbohidratos como el fotosintato o fotoasimilado. Los carbohidratos que se sintetizan con mayor frecuencia son el disacárido sacarosa o el polisacárido almidón que son transportados por el floema, mientras algunos aminoácidos y ácidos grasos e isoprenoides se sintetizan en los cloroplastos a partir del C que es fijado durante la fotosíntesis, por lo que el C queda almacenado en la biomasa producida y en consecuencia se da una reducción de CO₂ de la atmósfera y queda almacenado a largo plazo (décadas, siglos y milenios de años (Azcón-Bieto y Talón, 2013; Herrero, 2010; Maji et al., 2017; Taiz y Zeiger, 2002).

2.3. Importancia de la estimación de la biomasa de ecosistemas forestales

De acuerdo con Garzuglia y Saket (2003), la biomasa total de un árbol se puede entender como la suma de las cantidades de materia orgánica presentes en las diferentes partes que constituyen al árbol (hojas, ramas, tronco principal, corteza y raíces). Su cuantificación o estimación sirve para estimar la cantidad de C contenido en un árbol, que representa aproximadamente un 50% de la biomasa total (Brown, 1997a). Cuando la cuantificación es a nivel de ecosistema forestal se obtiene la información para conocer la producción de biomasa del ecosistema, pero también se puede conocer la importancia del ecosistema en relación con el ciclo del carbono; la cantidad de carbono que se está secuestrando; la dinámica entre el carbono de la hojarasca y del suelo; la cantidad de CO₂ que potencialmente puede ser liberado a la atmósfera; y al impacto de los ecosistemas forestales en la mitigación del calentamiento global (Carrillo et al, 2016; Segura y Andrade, 2008). Además, también sirve para poder acceder a estrategias llamadas programas de pagos por servicios ambientales, en los cuales se da una
compensación monetaria a cambio de los beneficios obtenidos de los ecosistemas, estos beneficios pueden ser de manera general: secuestro y almacenamiento de carbono, conservación de la biodiversidad, servicios hidrológicos; belleza escénica y recreación; aprovechamiento de recursos naturales como plantas medicinales y de interés alimenticio; madera como combustible y para la fabricación de muebles; y diferentes animales con interés alimenticio, además, también se contempla los servicios relacionados con los ciclos biogeoquímicos como C, H₂O, N y P que son usados por los organismos autótrofos durante el proceso de fotosíntesis (Torres, y Guevara, 2002). En cuanto al pago de servicios ambientales en relación con el secuestro y almacenamiento de carbono es necesario la estimación de la biomasa total del ecosistema por hectárea, para poder estimar posteriormente la cantidad carbono secuestrado en ella, aproximadamente 50% del total de la biomasa, que se paga por hectárea a razón de entre USD 40 y USD 80 por tonelada de CO₂ para antes del año 2020 y entre USD 50 y USD 100 por tonelada para el 2030 (Banco Mundial, s.f). En México el precio es variable y dependiente de las oportunidades del mercado que marca la oferta y la demanda, así como de las estrategias gubernamentales desarrolladas para tal fin. Para poder ofrecer el servicio ambiental de secuestro de carbono, las empresas, instituciones o comunidades, o particulares poseedores de áreas verdes deben cumplir con esquemas regulatorios como monitoreo, evaluación, certificaciones de captura o fijación de carbono. Además, se debe demostrar que el área en cuestión tenga un potencial de capturar anualmente entre 4000 y 8000 toneladas de dióxido de carbono o 40000 toneladas distribuidas en un periodo de 5 años, para ello la superficie puede integrar diferentes sistemas de producción forestal o agroforestal, incluyendo áreas de restauración o reforestación, a menos que éstos ya hayan recibido algún pago del gobierno federal por la prestación de otro servicio ambiental (Ordóñez, 2008). De esta manera los programas de pagos por servicios ambientales contribuyen a la conservación de los ecosistemas al mismo tiempo que se mejoran las condiciones económicas de los beneficiados (Ruiz, García, Sayer, 2007). Aunque, a pesar de su importancia, cada día se reduce la extensión de su territorio debido al cambio de uso de suelo para la agricultura, por lo que resulta de importancia su conservación, forestación y reforestación que recordemos ayuda a almacenar C de forma natural (Carrillo et al, 2016; Segura y Andrade, 2008). Es por lo que se crearon las áreas naturales protegidas que tienen el propósito de conservar el mayor porcentaje de
biodiversidad de especies y de variabilidad genética (Íñiguez, Jiménez, Ramírez, y Ortega-Rubio, 2014).

2.4. Planeación para la estimación de la biomasa

Para poder realizar las estimaciones de biomasa y de C de un ecosistema forestal se debe tener en cuenta la aplicación de técnicas de planeación, muestreo, registro, análisis e interpretación de los datos obtenidos. El primer objetivo que se debe establecer es hacer una rodalización del ecosistema, de acuerdo con Ruiz-Díaz et al. (2007), que consiste en la división del territorio de estudio. La división en rodales se debe hacer tomando en cuenta características similares y homogéneas para cada rodal por lo que se debe tomar en cuenta la fisiográfica, geoforma, altitud, exposición, pendiente, vegetación asociada, edad similar, estructura similar en el estrato del dosel y similitud en condición sanitaria para la población arbórea dominante (Intergovernmental Panel on Climate Change [IPCC], 2006). El segundo objetivo es determinar el tamaño de la muestra, para lo cual se debe tener en cuenta la dimensión del área, la variabilidad de la muestra, el costo de la aplicación, el tiempo necesario para que se pueda realizar y la precisión que se requiere estimar.

Además, tanto si se quiere conocer la diversidad, abundancia o dominancia de la flora como si se quiere estimar la biomasa vegetal y la cantidad de C almacenado se debe tener en cuenta la diversidad de las especies vegetales, para ello se puede hacer uso de diseños de muestreo por compartimentos o conglomerados (Honorio, y Baker, 2010).

2.5. Estimación de la biomasa

De acuerdo con Garzuglia y Saket (2003) para estimar la biomasa de un árbol se debe tomar en cuenta los valores de las diferentes partes del organismo, tales como las hojas, ramas, el tronco principal, la corteza y las raíces. Una vez que se han tomado en cuenta la estimación se puede abordar a través de diferentes métodos (Ruiz-Díaz et al., 2007).

De manera general existen dos grupos de métodos que sirven para estimar la biomasa. Estos métodos son el método directo y el indirecto (Ruiz-Díaz et al., 2007).

2.5.1. Método directo
El método directo es un método destructivo que consiste en hacer mediciones de los parámetros básicos de un árbol, entre los más importantes está el diámetro a la altura del pecho (DAP, cm), la altura total (AT, m), el diámetro de la copa (DC, m), y la longitud de la copa (LC, m); después de medir los parámetros se tiene que derribar el árbol para calcular la biomasa a través de la medición del peso de cada uno de los componentes que lo constituyen, para esto se debe cortar y separar el árbol en el fuste, las ramas, raíces y el follaje y pesar cada uno en campo para tener el peso fresco (González, 2008; Ruiz-Díaz, Rodríguez-Ortiz, Leyva-López, y Enríquez del Valle, 2014). Para que la muestra sea representativa de la población que se quiere evaluar, se debe derribar una cantidad de árboles que sea proporcional a la frecuencia relativa de la población (Ruiz-Díaz, Rodríguez-Ortiz, Leyva-López, y Enríquez del Valle, 2014).

La determinación de la biomasa de cada componente se hace mediante la toma de submuestras por cada componente, las cuales deben ser llevadas a laboratorio para pesarlas y obtener el peso seco, después con el uso de los factores de conversión de biomas (FCB) se infiere el peso de cada componente, esto se hace debido a la relación entre el peso fresco y el peso seco de las muestras. Posteriormente la sumatoria de cada uno de los componentes que constituyen el árbol dará como resultado el peso total para cada individuo (Araújo, Higuchi, y Carvalho de, 1999).

2.5.2. Métodos indirectos

Los métodos indirectos no son destructivos, sino que usan diferentes herramientas para tratar de estimar la biomasa contenida en el árbol (Ruiz-Díaz, Rodríguez-Ortiz, Leyva-López, y Enríquez del Valle, 2007). Entre las técnicas para la estimación de la biomasa están los factores de expansión de la biomasa; sistemas de información geográfica y tecnología lidar (escaneo con rayos láser); y las ecuaciones alométricas (Ruiz-Díaz et al., 2007). Sin embargo, la técnica más usada son las ecuaciones alométricas, las cuales pueden usarse para estimar los valores de una variable a partir de los valores de otra. A través de las ecuaciones alométricas se puede estimar la altura total del árbol, el volumen, la biomasa aérea, la cantidad de C, aunque también se puede estimar los diferentes componentes por separado tales como raíces, ramas y hojas (Ruiz-Díaz et al., 2007).

2.5.3. Ecuaciones alométricas
Para estimar la biomasa en la parte aérea de árboles forestales, las ecuaciones alométricas son las técnicas más usadas con las que se puede estimar también volumen y cantidad de carbono contenido en los árboles (Rojas-Garcia et al., 2015). Las ecuaciones alométricas se basan en el modelaje matemático de las relaciones alométricas existentes en los organismos vivos, en la relación de la proporción entre las diferentes partes o el todo, en el cambio de proporción entre las partes como resultado del crecimiento. Para su estudio se hace uso de modelos matemáticos como los modelos de regresión que pueden ser aplicados para estudiar las relaciones entre los valores de variables dasométricas, como es el DAP, la altura total (AT), la cobertura foliar (CF) y la densidad específica de la madera (DEM) (Rügnitz, y Chacón, 2009). Una vez desarrollada la ecuación es posible usarla para estimar el valor de una variable ausente a partir de los valores de otra u otras variables medidas, e incluso es posible extrapolar la ecuación para estimar los valores en situaciones diferentes, aunque con crecimientos similares (Parresol, 1999; Rügnitz, y Chacón, 2009; Ruiz-Díaz et al., 2007).

2.5.3.1. Creación de ecuaciones alométricas para estimar biomasa

El uso de las ecuaciones alométricas es un método no destructivo, pero para desarrollarlas es necesario el uso del método destructivo y por lo tanto la tala y desfragmentación de \(n \) número de árboles. De acuerdo con Rügnitz, y Chacón (2009), la precisión y exactitud de estimación de las ecuaciones alométricas está en relación con la \(n \) cantidad de valores observados de las variables distribuidos equitativamente en las diferentes clases de valores para la variable dependiente. Si la precisión y la exactitud son altas, entonces, es posible estimar los incrementos y decrementos de biomasa, volumen y carbono almacenado en los bosques a través de periodos de tiempo relativamente cortos (Basuki, Lake Van, Skidmore y Hussin, 2009). Además, se sabe que las ecuaciones mejoran su análisis predictivo cuando se consideran más variables independientes, como el diámetro a la altura del pecho, altura total, densidad de la madera, cobertura de la copa etc. Aunque, en la práctica se suele usar la variable DAP, que es la más usada debido a la facilidad y mayor precisión para ser medida, ya que las otras variables son más difíciles de medir en campo y requieren de mayor tiempo para ser medidas, además se miden con mayor imprecisión, como es el caso en la medición de la altura de los árboles que es más difícil e impreciso de hacer en ecosistemas forestales con alta densidad y dosel cerrado que dificulta y evitando la visibilidad para medir con exactitud y precisión la altura (Brown, 2002).
Para desarrollar ecuaciones alométricas se deben seguir una serie de pasos como la identificación de la especie de interés, la selección de los individuos distribuidos equitativamente en las diferentes clases de la o las variables dasométricas dependientes, la cuantificación de los valores de las variables dasométricas, la tala y fragmentación de los árboles para la obtención de los valores de la biomasa, la obtención del peso fresco una vez fragmentado el árbol, el secado de los diferentes componentes del árbol en laboratorio y la obtención de su peso seco, la transformación de los valores del peso a valores de biomasa usando fórmulas establecidas, la elaboración de una base de datos con el valor de ambas variables para cada individuo y la creación finalmente de las ecuaciones aplicando regresión (Brown, 1997b; Rügnitz, y Chacón, 2009). Dependiendo del objetivo de la ecuación, se pueden realizar ecuaciones para un componente, para la suma de los componentes o para el total del árbol.

Una de las ecuaciones más usadas y recomendadas para estimar la biomasa, es la ecuación de Brown (1997a).

\[B = V C \times D \times F E B \]

(1)

donde:

- \(B \) = biomasa seca (t ha\(^{-1}\))
- \(V C \) = volumen comercial (m\(^3\) ha\(^{-1}\))
- \(D \) = promedio de densidad de la madera ponderado en base al volumen verde y peso seco (t m\(^3\))
- \(F E B \) = factor de expansión de biomasa (relación entre la biomasa sobre el suelo secada en horno de los árboles y el volumen comercial de la biomasa secada en horno), sin dimensión.

Además del modelo matemático de la ecuación de Brown (1997a) existen otro tipo de modelos matemáticos de ecuaciones alométricas. En México, desde la década de 1980 se han generado más de 526 modelos alométricos para estimar la biomasa aérea total, la biomasa aérea subterránea (raíces), la biomasa de componentes aislados de los árboles (ramas, hojas, fuste) y el C almacenado en la biomasa, estos modelos se han generado para formas de vida como árboles, arbustos, bambúes y palmeras (Rojas-García et al., 2015; y Rojas-García, 2014). Esto demuestra la diversidad de ecuaciones alométricas existentes para las diferentes formas de vida de la
vegetación, la diversidad de modelos matemáticos para ecuaciones alométricas y la diversidad de ecuaciones alométricas por especie. De los 526 modelos de ecuaciones alométricas existentes, la mayoría han sido desarrolladas para especies que pertenecen a la familia Pinaceae, la cual representa la familia más importante comercialmente, de esta familia, la mayoría de las ecuaciones alométricas fueron desarrolladas en diferentes entidades geográficas para el género Pinus que se distribuye a nivel nacional, incluso existiendo más de una ecuación para una misma especie (Rojas-García et al., 2015; y Rojas-García, 2014). Sin embargo, aún falta desarrollar ecuaciones alométricas para especies que no tienen ni una sola. De acuerdo con la información del Inventario Forestal Nacional y de Suelos (INFyS) de México aún existen áreas de oportunidad para el desarrollo de modelos alométricos, ya que solo alrededor del 41% de las especies registradas en el INFyS tiene una ecuación alométrica para estimar la biomasa, lo que equivale a 156 especies, mientras que 120 especies aún no tienen asignado una ecuación alométrica y, lo cual representa una falta de conocimiento para poder estimar su biomasa en los ecosistemas en que están presentes y su contribución en el ciclo del carbono (Comisión Nacional Forestal [CONAFOR], 2015; Rojas-García, 2014).

Dado que existe hasta más de una ecuación alométrica para una misma especie a veces surge la pregunta respecto a qué ecuación usar. Una forma sencilla para determinar qué ecuación es mejor que otra, es comparando el valor de la raíz del error cuadrático medio cuyo valor será menor en el modelo de mejor ajuste a los datos (Furnival, 1961). Aunque dicho valor solo es útil cuando las ecuaciones alométricas son del mismo modelo matemático, ya que, si no es así, es necesario el uso de métodos más sofisticados como los índices de selección de modelos.

2.5.3.2. Simulación de pseudo/datos

Los pseudo datos son utilizados para una amplia variedad de propósitos. La mayoría de las veces se usan en estudios de meta/análisis donde es necesario conocer más información sobre los datos originales de un estudio o bien se quiere combinar la información contenida en datos originales de un estudio con la información de datos originales de otros estudios, donde, los modelos no se pueden combinar matemáticamente debido a sus diferentes tipos y parámetros (Wayson et al., 2015). Entonces, se puede recurrir a la simulación de pseudo/datos, para imitar a los datos originales y obtener a partir de ello cierta información (Bowden, Thompson, y Burton, 2006). Para
entender esto, supongamos que se tiene una población Y, la cual sigue una distribución normal con media θ, y error estándar σ, como en la ecuación siguiente:

$$Y \sim N(\theta, \sigma^2)$$

Si a partir de dicha población se obtiene una muestra tal que \hat{y}_{i1}, con distribución normal, media $\hat{\theta}_{i1}$, y error estándar \hat{s}_{i1}, como en la ecuación siguiente:

$$\hat{y}_{i1} \sim N(\hat{\theta}_{i1}, \hat{s}_{i1}^2)$$

Entonces, si de \hat{y}_{i1} se obtiene una muestra aleatoria tal que \hat{y}_{i2} con distribución normal tenga media $\hat{\theta}_{i2}'$ y error estándar \hat{s}_{i2}', y si \hat{y}_{i1} se compara con \hat{y}_{i2}, tal que Intervalo dado por la ecuación siguiente:

$$\left(\hat{\theta}_{i1} - \hat{\theta}_{i2} \right) \pm t_{1-\alpha/2} \sqrt{\frac{s_{p2}^2}{n_{i1}} + \frac{s_{p2}^2}{n_{i2}}}$$

De un valor 0 dentro del intervalo de confianza se puede decir que las muestras tienen medias similares, por lo que $\hat{y}_{i1} \sim N(\hat{\theta}_{i1}, \hat{s}_{i1}^2)$ y $\hat{y}_{i2} \sim N(\hat{\theta}_{i2}, \hat{s}_{i2}^2)$ serán muestras similares (Daniel, 2005; Reimann, Filzmoser, Garret, y Dutter, 2008; Zar, 2010). Lo cual también se puede comprobar por la ecuación siguiente:

$$t = \frac{(\bar{x}_{i1} - \bar{x}_{i2}) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{s_{p2}^2}{n_1} + \frac{s_{p2}^2}{n_2}}}$$

Para la simulación de pseudo datos se parte del principio de que los pseudo datos son una muestra representativa obtenida de los datos originales que contempla los parámetros de la población. Aunque en la simulación de pseudo/datos no se conocen los valores reales como para
obtener una muestra, sí se conocen los valores esperados y el coeficiente de determinación para que a partir de dichos datos se puedan simular datos similares.

III. Justificación

Para promover zonas forestales para la mitigación del calentamiento global y conservar los ecosistemas forestales a través de los programas de pagos por servicios ambientales se deben hacer estudios de secuestro de carbono para lo cual es necesario estimar la biomasa forestal, sin embargo, los métodos destructivos son en muchas ocasiones costos económicamente, en tiempo y esfuerzo, por lo que el uso de metodologías indirectas como el empleo de bases de datos biológicos para obtener información del área de estudio y el uso de ecuaciones alométricas ya existentes para realizar las estimaciones de la biomasa pueden ser útiles para los estudios de biomasa, y secuestro de carbono, aunque ambas metodologías presentan ciertas problemáticas para su empleo, ya que en el caso de los inventarios forestales muchas veces no se encuentra toda la información disponible y la que está disponible puede presentar problemas de errores de nomenclatura taxonómica y en el caso de las ecuaciones alométricas existe la problemática de qué ecuación usar cuando hay más de una por especie. Adicionalmente existe la problemática de cómo conocer el valor de la desviación estándar cuando se trabaja con ecuaciones alométricas ya existentes, ya que el valor de la desviación estándar no se reporta ni tampoco los valores de las variables dasométricas. Esto es importante ya que para concursas en los programas de pagos por servicios ambientales es necesario conocer el valor de la desviación estándar.

IV. Pregunta de investigación

¿Cómo estimar la biomasa aérea a través de metodologías indirectas como el uso de los inventarios forestales y ecuaciones alométricas existentes teniendo en cuenta los errores de nomenclatura taxonómica en los inventarios forestales, la selección de ecuaciones alométricas existentes y el cálculo de la incertidumbre en las estimaciones de biomasa en un área determinada de los bienes comunales en San Juan Cuauhtémoc, Tlahuapan?

V. Hipótesis
La corrección de los errores nomenclaturales en inventarios, junto con la selección de ecuaciones alométricas existentes y la simulación de pseudo datos permite estimar la biomasa aérea y su incertidumbre de manera indirecta en un área determinada de los bienes comunales en San Juan Cuauhtémoc, Tlahuapan.

VI. Objetivos

6.1. Objetivo general

Estimar la biomasa aérea y su incertidumbre a través de técnicas indirectas como el uso y selección de ecuaciones alométricas existentes para las especies de coníferas en un área determinada en los bienes comunales de San Juan Cuauhtémoc, Tlahuapan.

6.2. Objetivos específicos

Para San Juan Cuauhtémoc, Tlahuapan:

1. Obtener una base de datos con los registros de las especies de coníferas existentes en la zona de estudio.
2. Obtener y seleccionar una base de datos de las ecuaciones alométricas existentes en la literatura que sirvan para estimar la biomasa de las especies de coníferas existentes en la zona de estudio.
3. Aplicar las ecuaciones alométricas encontradas y seleccionadas para estimar la biomasa por especie de coníferas y por parcela en la zona de estudio.
4. Estimar la incertidumbre a través de la simulación de pseudo/datos.

VII. Metodología

7.1. Zona de estudio

7.1.1. Naturaleza

La zona de estudio fue en los bienes comunales de la localidad de San Juan Cuauhtémoc en el municipio de Tlahuapan perteneciente al estado de Puebla. La ubicación geográfica de Tlahuapan está entre las coordenadas 19° 14’ y 19° 28’ de latitud norte y los meridianos 98° 40’ de longitud.
oeste. Tiene una altitud entre 2300 y 3500 metros sobre el nivel del mar (m.s.n.m.). Colinda al norte con el estado de Tlaxcala, al este con el estado de Tlaxcala y los municipios de San Matías Tlalancaleca y San Salvador el Verde, al sur con los municipios de San Salvador el Verde y el estado de México, al oeste con el estado de México. Tlahuapan ocupa el 0.91% de la superficie del estado de Puebla, y cuenta con 86 localidades y una población total de 36,518 habitantes. Se encuentra en una provincia perteneciente al Eje Neovolcánico, con subprovincia constituida por lagos y volcanes de Anáhuac, con estrato de volcanes a volcanes aislados, meseta basáltica con cañadas y lomerío de basalto con cañadas. Tiene una temperatura de los 8° a los 16°C, con un rango de precipitación de 900 a los 1100 en mm; con un clima templado subhúmedo marcado por lluvias en verano (61.02%) y semifrío subhúmedo con lluvias en verano (38.98%). Tiene suelos de tipo andosol (25.98%), cambisol (25.94%), umbrisol (15.31%), leptsol (10.64%), arenosol (8.87%), durisol (8.08%), phaeozem (0.17%) y el resto pertenece a la zona urbana (5.01%). En cuanto a su hidrología pertenece a la región hidrológica del Balsas (97.97%) y Pánuco (2.03%), en la cuenca del río Atoyac (97.97%) y el río Moctezuma (2.03%), dentro de la subcuenca del Río Atoyac/San Martín Texmelucan (97.97%) y el lago Tochac junto con el Tecocomulco (2.03%); las corrientes de agua son perennes intermitentes como se ve en Chiautonco, Grande, Las rositas y Texcalco. El uso de suelo se basa en la agricultura (52.03%) y la zona urbana (5.01%), mientras que la vegetación es de bosque (40.87%) y pastizal (2.09%). Aunque tiene otros usos potenciales como son para agricultura mecanizada continua (22.86%), agricultura con tradición animal continua (27.58%), agricultura manual continua (29.46%), agricultura manual estacional (0.20%) y el resto no es apto para la agricultura (19.90%). En la parte pecuaria el uso potencial de suelo es para el establecimiento de praderas para el cultivo con maquina agrícola (22.86%), praderas cultivadas con tracción animal (27.58%), para el aprovechamiento de la vegetación natural diferente del pastizal (30.99%), para el aprovechamiento de la vegetación natural únicamente por el ganado caprino (13.56%) y el resto corresponde a no apta para uso pecuario (5.01%). La urbe existente ha ido creciendo sobre roca ígnea extrusiva del neógeno, en sierra volcánica con estrato de volcanes o de volcanes aislados, sobre áreas donde originalmente había suelos denominados cambisoles y arenosoles, además de que tienen clima templado subhúmedo con lluvias en verano, y están creciendo sobre terrenos previamente ocupados por pastizal y agricultura (Instituto Nacional de Estadística y Geografía [INEGI], 2010).

En el aspecto del lenguaje existe una gran diversidad, ya que, se hablan diferentes dialectos como son el huasteco, chinanteco, zapoteco, mazahua, mazateco, mixteco, totonaco, otomí y náhuatl (INEGI, 2010).
La vegetación se puede diferenciar en agricultura, pastizal y bosque, siendo la agricultura la vegetación más existente que hay, mientras que en segundo lugar se ubica el bosque (INEGI, 2010).

El área de estudio, localidad de San Juan Cuauhtémoc, comprende una parte de la porción que pertenece al área de influencia del área natural protegida Parque Nacional Izta/Popo Zoquiapan ubicado dentro de la región del Eje Volcánico Transversal que constituye el límite geográfico entre las regiones neártica y neotropical (Comisión Nacional de Áreas Naturales Protegidas [CONANP], n.d). En la zona existen gradientes de ecosistemas diferenciados que se derivan de la altimetría, lo cual favorece la riqueza específica y la existencia de endemismos. La vegetación a una altura de entre los 2900 y los 3400 metros sobre el nivel del mar (m s.n.m.) está dominada por árboles de coníferas como pino y cedro que suelen tener presencia en las laderas, así como encino y oyamel (Abies religiosa). Existen relictos (zonas reducidas) de madroños (Arbetus xalapiensis) y ailes (Alnus firmifolia). De los 3500 a los 4200 m s.n.m. hay presencia de pinares abiertos que tienen mayor predominancia de Pinus hartwegii, además que se hace presente la pradera de montaña (Comisión Nacional de Áreas Naturales Protegidas [CONANP], n.d).

Respecto a la flora y la fauna, existe endemismo con una diversidad alta en vertebrados, media para plantas vasculares y alta para hongos.

Dada su flora y fauna, esta área destaca como un centro de origen y diversificación natural para animales vertebrados. Además, de tener gran importancia por los servicios ambientales que proporciona a los asentamientos humanos circundantes, tal como el aporte de agua a la macro región más densamente poblada del país que comprende el valle de México, Puebla y Cuernavaca, y el valor paisajístico y turístico.
Figura 1. Localización de la zona de estudio. Los bienes comunales pertenecen a la localidad de San Juan Cuauhtémoc en el municipio de Tlahuapan dentro del estado de Puebla. Tienen una extensión de 1037.81 Ha. El tipo de bosque presente en los bienes comunales de acuerdo con el Inventario Forestal Estatal y de Suelos del estado de Puebla es vegetación primaria de bosque de oyamel, vegetación primaria de bosque de pino/encino, vegetación secundaria de bosque de oyamel. Los bienes comunales están dentro de la zona de conservación del Iztaccíhuatl que pertenece al Parque Nacional Izta/Popo Zoquiapan, ubicado en el centro oriental del Eje Neovolcánico Transversal, constituido por el Popocatépetl y el Iztaccíhuatl.

7.1.2. Sociedad

7.1.2.1. Situación de los propietarios de los bienes comunales

Se realizó una encuesta para conocer la situación económica y laboral de los propietarios de los bienes comunales e identificar la pertenencia del pago por servicios ambientales en los bienes comunales. En dicha encuesta se pregunta acerca de su edad, escolaridad, actividad económica primaria, actividad económica secundaria, ingresos anuales y cantidad de personas dependientes.

7.1.3. Registros de especies de coníferas reportados en los bienes comunales de San Juan Cuauhtémoc
7.1.3.1. Obtención de los registros de especies de árboles de coníferas presentes en los bienes comunales de San Juan Cuauhtémoc, Tlahuapan

Se consultó el Inventario Nacional Forestal y de Suelos (INFyS), el Inventario Estatal Forestal y de Suelos del estado de Puebla (IEFySP) y los datos generados por personal técnico de la Comisión Nacional Forestal (CONAFOR) de la localidad de San Juan Cuauhtémoc (CONAFOR, 2014, 2015).

A partir de la información obtenida del INFyS se obtuvieron los registros de las especies de árboles reportadas para cada uno de los estados de México y de cada uno de los municipios por estado. Se selecciono y filtro solamente la información necesaria para el estado de Puebla, siendo de gran interés la información de los registros de las especies de árboles por cada uno de los municipios del estado de Puebla, de la cual se seleccionó aquella respecto al municipio de Tlahuapan. La información anterior fue comparada con la información del IEFySP, y a partir de ello se obtuvo un listado de las especies existentes en el estado de Puebla, en especial para el municipio de Tlahuapan y la localidad de San Juan Cuauhtémoc, que fue complementado con información del personal técnico de la Comisión Nacional Forestal para los bienes comunales de San Juan Cuauhtémoc (CONAFOR, 2009, 2014, 2015).

7.1.4. Obtención de las ecuaciones alométricas para las especies de coníferas presentes en San Juan Cuauhtémoc Tlahuapan

Una vez fueron identificadas las especies de coníferas presentes en San Juan Cuauhtémoc Tlahuapan se buscó en la literatura las ecuaciones correspondientes, para lo cual consulta la base de datos del Programa Mexicano del Carbono (PMC), que tiene una base de datos con 478 ecuaciones alométricas por especie y por componente de estimación (Rojas-Garcia et al, 2015). Una vez que se identificaron las ecuaciones por especies, se seleccionaron aquellas ecuaciones para estimar la biomasa aérea total, ya que existen ecuaciones alométricas para estimar la altura, la biomasa de ramas, hojas y raíces, y carbono secuestrado; después se seleccionaron solo aquellas de tipo potencial al haber de tipo logarítmico y exponencial; posteriormente se terminaron seleccionando aquellas con solo la variable DAP, ya que existían otras con la altura y la densidad de la madera etc (Rojas-Garcia et al, 2015).

Dado que en la base de datos de ecuaciones alométricas del PMC faltaba cierta información necesaria respecto a los parámetros obtenidos de la regresión y estadísticas de los datos con las
que se crearon las ecuaciones alométricas, fue necesario complementar la información haciendo una revisión de los artículos donde se reportan dichas ecuaciones alométricas.

7.1.5. Selección de ecuaciones alométricas

Ya que las ecuaciones que se seleccionaron tenían la misma variable y eran del mismo tipo (potencial) se usó su valor de R^2 para la selección de las ecuaciones, con base a su valor de ajuste, así como también al tamaño de la muestra con la que se realizó la ecuación.

7.1.6. Identificación de las especies de coníferas presentes en un terreno de bien comunal de la localidad de San Juan Cuauhtémoc, Tlahuapan

Con la información obtenida de la lista de los registros de coníferas presentes en San Juan Cuauhtémoc, Tlahuapan se hizo una revisión en la literatura de las claves dicotómicas para la identificación de especies de coníferas.

Una vez que se fue a campo se seleccionaron, por conveniencia, 4 áreas de bosque de vegetación diferente de coníferas, donde se estableció una parcela para cada aérea. Para hacer cada parcela se tomó una estaca que fue enterrada en el suelo para indicar el centro de la parcela y se tomó las coordenadas del punto. Posteriormente se amarraron a cada una de las estacas 4 cuerdas de 15 m que fueron extendidas para delimitar el área de las parcelas y dividirlas en 4 cuadrantes (Romahn, y Ramírez, 2010). En cada cuadrante se identificó con ayuda de las claves dicotómicas cada una de las especies de coníferas presentes. Una vez identificada la especie del árbol se midió la circunferencia de su tronco a la altura de 1.30 m, y se marcó con pintura el árbol para no volver a ser contado. El mismo procedimiento se hizo para los cuadrantes restantes de cada una de las cuatro parcelas.

7.1.7. Estimación de la biomasa por parcela

La circunferencia de cada árbol fue dividida entre π para obtener el diámetro del árbol, a una altura de 1.30 cm, usando la fórmula siguiente:

$$D = \frac{C}{\pi}$$

(7)
Una vez que se obtuvo el DAP para todas las coníferas, se ingresó cada valor a la ecuación alométrica correspondiente a la especie de conífera del valor correspondiente, de lo que se obtuvo la biomasa aérea estimada para el DAP de cada árbol (ver anexo). Una vez que se obtuvieron los valores de biomasa para cada árbol se sumaron los valores para obtener la biomasa total de coníferas de la parcela, además se obtuvo sus estadísticas descriptivas.

Posteriormente los valores se multiplicaron por 0.5 que es el valor estándar para la conversión a carbono, para después convertirse a toneladas en carbono y estimar la cantidad de pago por servicio ambiental.

7.1.8. Identificación de las especies de coníferas que producen mayor cantidad de biomasa

Para saber que especies de coníferas eran más importantes en la producción de biomasa según las ecuaciones alométricas se simularon aleatoriamente 10000 datos con distribución uniforme dentro de rangos establecidos de acuerdo con los valores mínimos y máximos de las variables originales del DAP utilizados en la creación de las ecuaciones alométricas. Estos valores fueron sustituidos en la variable DAP de las ecuaciones alométricas para obtener las estimaciones de biomasa. Así se obtuvieron de acuerdo con cada valor de la variable DAP su valor estimado de biomasa según la ecuación alométrica usada, con lo que se pudo visualizar la cantidad de biomasa estimada que produce cada especie.

7.2. Simulación de pseudo datos

Para la simulación de datos se tomaron en cuenta las ecuaciones alométricas existentes seleccionadas para las especies encontradas, y se tomó en cuenta sus valores de R^2, tamaño muestral, mínimo y máximo de la variable DAP; estos últimos se obtuvieron por la revisión de los artículos originales (Rodríguez-Laguna et al., 2009; Rodríguez, 2013; Wayson et al., 2015). Después, con el uso del software R Studio se simularon 10000 valores continuos aleatorios con distribución uniforme, dentro de un rango entre los 5 cm a los 65 cm (R Core Team, 2018; R Studio Team, 2018; Wayson et al., 2015). Los valores simulados se utilizaron para estimar la biomasa aérea por especie.

\[\text{Biomasa} = e^{(\beta_0 + \beta_1 \ln(DAP))} \]
Donde:

\(\beta_0 \) El valor del parámetro \(\beta_0 \) original de la ecuación alométrica sobre la que se quiere crear los pseudo/datos.

\(\beta_1 \) El valor del parámetro \(\beta_1 \) original de la ecuación alométrica sobre la que se quiere crear los pseudo/datos.

Con ello se crearon 10000 valores aleatorios de biomasa en las diferentes clases diamétricas que contempla la ecuación alométrica original de la que se quiere simular los pseudo/datos. Después se crearon una secuencia entre el rango 1 y 200 e incrementos de 0.05, obteniendo 3981 valores (Wayson et al., 2015). Después se creó una matriz con 10000 filas y 3981 columnas. A continuación, para cada columna se simuló un conjunto de 10000 pseudo/datos, y cada uno de ellos con un incremento de dispersión dados la ecuación siguiente:

\[
Pseudo.\text{biomasa}[i] = \text{Biomasa} + \text{Desviación}[i] \times \text{rnorm(length(Biomasa))} \times \text{DAP}
\]

Donde:

[\(i \)] Es un valor que va de 1 a 3981

\(\text{Biomasa} \) Son los valores estimados de biomasa

\(\text{Desviación}[i] \) Es un valor que aumenta en 0.05 unidades

\(\text{rnorm(length(biomasa))} \) Son 10000 valores aleatorios con distribución normal, media 0, y desviación estándar 1.

\(\text{DAP} \) Son 10000 valores continuos aleatorios con distribución uniforme

Una vez obtenidos los 3981 conjuntos de pseudo/datos con diferentes niveles de dispersión se aplica logaritmo a las variables y se estima los parámetros con regresión lineal simple, aplicando la ecuación (69) (Wayson et al., 2015). Después, se obtuvo el conjunto de pseudo/datos que más se ajustara en \(R^2 \) al valor original de \(R^2 \) usando la formula siguiente:

\[
R^2_{\text{Pseudo}} - R^2
\]
Una vez que se obtiene el conjunto de los pseudo/datos con R^2, β_0, β_1, se procede a tomar una muestra un tamaño de muestra igual al tamaño de muestra de la ecuación original (Wayson et al., 2015). Con los pseudo/datos simulados se calculó el MS_{Res} con las fórmulas de regresión normal aplicando logaritmo y exponencial.

VIII. Resultados y discusión

8.1. Situación económica y laboral de los propietarios de los bienes comunales

De la encuesta realizada con una $n = 15$ se encontró que el promedio de edad de las personas que trabajan en los bienes comunales es de 56.13 ± 5.89, todos ellos de género masculino, su grado de estudios en el 6.66% fue sin estudios, 86.66% fue a nivel de primaria y 6.66% secundaria. Como actividad económica principal los propietarios de los bienes comunales son campesinos con un promedio de 17400 ± 10894 pesos que obtienen por cosecha, además como actividad económica secundaria se dedican al aprovechamiento anual de los recursos maderables que la CONAFOR les permite aprovechar, de lo cual obtienen anualmente en promedio 6233 ± 3093 pesos; por otra parte algunos mencionaron dedicarse a una tercer actividad económica de lo que en promedio obtenían anualmente 11625 ± 3502 pesos. Además, las personas encuestadas, tenían en promedio de 3 ± 1.55 dependentes económicos. Esto quiere decir que según las respuestas de las personas que fueron encuestadas su promedio de ingresos anuales es de 29833 ± 14732 pesos, lo cual quiere decir que repartidos entre los meses que tiene el año, se tendría 2486 ± 1228 pesos mensualmente; a esta suma se le tiene que contar los gastos generados por comida, materias primas para cultivar, medicamentos, maquinaria para el trabajo, productos de higiene, educación de los hijos etc.

En dicha situación económica, el pago por servicios ambientales de secuestro de carbono puede beneficiar económicamente a los dueños de los bienes comunales, siempre y cuando se pueda entrar en dicho programa, y para lo cual se necesitan hacer las estimaciones de carbono secuestrado a través del uso de ecuaciones alométricas. Sin embargo, como se sabe el desarrollo de ecuaciones alométricas es un método costoso, y que requiere de permisos especiales por parte de la CONAFOR para derrumbar los árboles necesarios para tener una n considerable, por lo que en dicho tipo de situación, el empleo de las ecuaciones alométricas ya generadas puede ser útil siempre y cuando se pueda determinar que el área de interés está secuestrando carbono a través
de las estimaciones, que se conoce la incertidumbre de las estimaciones, además de otras condiciones que se tienen que tomar en cuenta.

En los bienes comunales sólo se presentan las especies que aparecen en la tabla 1.

Tabla 1.

<table>
<thead>
<tr>
<th>División</th>
<th>Familia</th>
<th>Genero</th>
<th>Epíteto</th>
<th>Grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Abies</td>
<td>religiosa</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Ericaceae</td>
<td>Arbutus</td>
<td>xalapensis</td>
<td>Latifoliadas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Cupressaceae</td>
<td>Cupressus</td>
<td>lindleyi</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>montezumae</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>hartwegii</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>ayacahuite</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>patula</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>pseudostrobus</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Fagaceae</td>
<td>Quercus</td>
<td>taurina</td>
<td>Latifoliadas</td>
</tr>
</tbody>
</table>

De las cuales la mayoría de las especies son gimnospermas que pertenecen a la familia pinaceae, actinidiaceae y cupressaceae (coníferas) de acuerdo con la CONAFOR, las cuales se presentan en la tabla 2.

Tabla 2.

<table>
<thead>
<tr>
<th>Subclase</th>
<th>Orden</th>
<th>Familia</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Abies religiosa</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Cupressales</td>
<td>Cupressaceae</td>
<td>Cupressus lindleyi</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus montezumae</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus hartwegii</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus ayacahuite</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus patula</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus pseudostrobus</td>
</tr>
</tbody>
</table>

Total 1 2 2 7

Como se puede apreciar la mayoría de las especies pertenecen a la familia pinaceae que son árboles de importancia ecosistémica ya que producen una gran cantidad de oxígeno y biomasa, además de su gran importancia económica, ya que son usado para construir casas, papel, fuentes de resina, barnices y artesanías.
8.2. Inventario de ecuaciones alométricas presentes en la localidad de San Juan Cuauhtémoc, Tlahuapan

Identificadas las especies de coníferas presentes en San Juan Cuauhtémoc, se empataron con sus ecuaciones alométricas correspondientes, las cuales fueron sustraídas del inventario de 478 ecuaciones alométricas elaborado por García (2015), y las cuales se presentan en la tabla 3, para las especies encontradas en San Juan Cuauhtémoc.

<p>| Tabla 3. Ecuaniones alométricas encontradas para las especies presentes en la localidad de San Juan Cuauhtémoc Tlahuapan. |
|-----------------|------------------|----------------|----------|----------|-------------------|
| Especie | Ecuación | Unidad | Muestra | R2 | MSRes | Referencia |
| Abies religiosa | [1.5842][Exp(0.044DBH)] | Kg | 10 | 0.6170 | Flores et al., 2011 |
| Pinus patula | [0.0329][DBH^2.1683] | Kg | 18 | 0.9300 | Pacheco, 2011 |
| Pinus patula | [Exp(-4.45555)[DBH^2.33251]] | Kg | 27 | 0.9600 | Castellanos et al., 1996 |
| Abies religiosa | [0.8413][Exp(0.0398DBH)] | Kg | 10 | 0.5880 | Flores et al., 2011 |
| Pinus patula | [0.1483][DBH^1.3707] | Kg | 18 | 0.8800 | Pacheco, 2011 |
| Pinus patula | [Exp(-3.19559)[DBH^2.02051]] | Kg | 27 | 0.9200 | Castellanos et al., 1996 |
| Pinus patula | [29.440][Exp([-26.519]/DBH)] | Kg | 18 | 0.9010 | Figueroa et al., 2010 |
| Pinus ayacahuite | [0.6437][DBH^1.6020] | Kg | 58 | 0.9200 | Návar, 2009b |
| Pinus pseudostrobus | [0.001][DBH^3.954] | Kg | 20 | 0.8400 | Méndez et al., 2011 |
| Pinus teocote | [0.4452][DBH^1.7682] | Kg | 56 | 0.8900 | Návar, 2009b |
| Pseudotsuga menziesii | [0.2883][DBH^1.7343] | Kg | 21 | 0.7200 | Návar, 2009b |
| Abies religiosa | [0.0173][DBH^2.7459] | Kg | 10 | 0.9280 | Flores et al., 2011 |
| Pinus ayacahuite | [0.0690][DBH^2.4515] | Kg | 58 | 0.9700 | Návar, 2009b |
| Pinus patula | [0.0262][DBH^2.6419] | Kg | 18 | 0.9600 | Pacheco, 2011 |
| Pinus patula | [Exp(-2.06082)[DBH^2.30026]] | Kg | 27 | 0.9900 | Castellanos et al., 1996 |
| Pinus pseudostrobus | [0.007][DBH^2.975] | Kg | 20 | 0.9200 | Méndez et al., 2011 |
| Pinus teocote | [0.0274][DBH^2.6928] | Kg | 56 | 0.9700 | Návar, 2009b |
| Pseudotsuga menziesii | [0.0348][DBH^2.5893] | Kg | 21 | 0.9200 | Návar, 2009b |
| Abies religiosa | [0.0754][DBH^2.513] | Kg | 26 | 0.9930 | Avendaño et al., 2009 |
| Abies religiosa | [0.031661][DBH^2.62221] | Kg | 250 | 1.0000 | Rodríguez, 2013 |
| Abies religiosa | [0.0143][DBH^2.8355] | Kg | 16 | 0.8795 | Juárez, 2008 |
| Cupressus lindleyi | [0.5266][DBH^1.7712] | Kg | 18 | 0.9305 | Vigil, 2010 |
| Pinus ayacahuite | [0.0581]^[[[DBH^2]TH]0.919] | Kg | 1 | 0.9700 | Ayala, 1998 |
| Pinus ayacahuite | [Exp(-3.066)[DBH^2.646]] | Kg | 45 | 0.9700 | 0.0440 | Návar, 2010 |
| Pinus ayacahuite | [0.2893][DBH^2.1569] | Kg | 58 | 0.9700 | Návar, 2009b |
| Pinus hartwegii | [0.0635]*[DBH^2.4725] | Kg | 29 | 0.9870 | Jiménez, 2010 |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Expression</th>
<th>Kg</th>
<th>Protein Density</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus montezumae</td>
<td>$[0.058]^{}[DBH^2]*TH^1.919$</td>
<td>6</td>
<td>0.9700</td>
<td>Ayala, 1998</td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>$[0.013]^{*}[DBH^3.046]$</td>
<td>15</td>
<td>0.9900</td>
<td>Bonilla, 2009</td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>$[1.30454]^{*}[DBH^1.73099]$</td>
<td>19</td>
<td>0.9900</td>
<td>Rodriguez et al., 2009</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0514]^{*}[DBH^2.5222]$</td>
<td>18</td>
<td>0.9827</td>
<td>Pacheco, 2011</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[Exp[-1.8621]]^{*}[DBH^2.27675]$</td>
<td>27</td>
<td>0.9900</td>
<td>Castellanos et al., 1996</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0948]^{*}[DBH^2.4079]$</td>
<td>25</td>
<td>0.9900</td>
<td>Diaz, 2005</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[5.338]+[18.634]^{}[DBH^2][TH]$</td>
<td>18</td>
<td>0.9740</td>
<td>Figueroa et al., 2010</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.407073]^{*}[DBH^2.02617]$</td>
<td>111</td>
<td>0.9800</td>
<td>Rodriguez et al., 2009</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0019]^{*}[DBH^2]*TH^1.98$</td>
<td>30</td>
<td>0.8700</td>
<td>Rodriguez et al., 2012</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0357]^{*}[DBH^2.6916]$</td>
<td>25</td>
<td>0.9828</td>
<td>Diaz et al., 2007</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.35179]^{*}[DBH^2]$</td>
<td>8</td>
<td>0.9410</td>
<td>Aguirre et al., 2011</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[2354.14]^{*}[Exp[-57.453/DBH]+1.3]$</td>
<td>20</td>
<td>0.9000</td>
<td>Aguirre et al., 2007</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.058]^{*}[DBH^2]*TH^1.919$</td>
<td>14</td>
<td>0.9700</td>
<td>Ayala, 1998</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.537]^{*}[DBH^1.882]$</td>
<td>8</td>
<td>0.8900</td>
<td>Dominguez, 2005</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[2354.14]^{*}[Exp[-57.453/DBH]+1.3]$</td>
<td>8</td>
<td>0.9200</td>
<td>Dominguez et al., 2009</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.003]^{*}[DBH^3.383]$</td>
<td>20</td>
<td>0.9000</td>
<td>Mendez et al., 2011</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[Exp[-2.611]^{*}[DBH^2.531]]$</td>
<td>24</td>
<td>0.8800</td>
<td>Návar, 2010</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[7027]^{*}[DBH^2.1924]$</td>
<td>20</td>
<td>0.8600</td>
<td>Palma, 2011</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.128495]^{*}[DBH^2.36444]$</td>
<td>208</td>
<td>0.9900</td>
<td>Rodriguez et al., 2009</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[Exp[-3.1641]^{*}[DBH^2.5996]]$</td>
<td>8</td>
<td>0.9800</td>
<td>Rodriguez et al., 2007</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.40196]^{*}[DBH^2]$</td>
<td>8</td>
<td>0.9480</td>
<td>Aguirre et al., 2011</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[2543.055]^{*}[Exp[-56.209/DBH]+1.3]$</td>
<td>8</td>
<td>0.9300</td>
<td>Dominguez, 2005</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.508]^{*}[DBH^1.933]$</td>
<td>8</td>
<td>0.9000</td>
<td>Dominguez, 2005</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[2543.05]^{*}[Exp[-56.209/DBH]+1.3]$</td>
<td>8</td>
<td>0.9300</td>
<td>Dominguez et al., 2009</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[Exp[-3.1641]^{*}[DBH^2.702]]$</td>
<td>49</td>
<td>0.9600</td>
<td>Návar, 2010</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.032495]^{*}[DBH^2.76658]$</td>
<td>209</td>
<td>0.9900</td>
<td>Rodriguez et al., 2009</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.2057]^{*}[DBH^2.2583]$</td>
<td>56</td>
<td>0.9600</td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Pseudotsuga menziesii</td>
<td>$[0.1354]^{*}[DBH^2.3033]$</td>
<td>21</td>
<td>0.9400</td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Quercus crispipilis</td>
<td>$[0.283]^{*}[DBH^2]*TH^0.807$</td>
<td>11</td>
<td>0.9540</td>
<td>Ayala, 1998</td>
</tr>
<tr>
<td>Quercus laurina</td>
<td>$[0.283]^{*}[DBH^2]*TH^0.807$</td>
<td>17</td>
<td>0.9540</td>
<td>Ayala, 1998</td>
</tr>
<tr>
<td>Quercus laurina</td>
<td>$[0.0406]^{*}[DBH^2.7339]$</td>
<td>14</td>
<td>0.9622</td>
<td>Tomas, 2013</td>
</tr>
<tr>
<td>Abies religiosa</td>
<td>$[0.035]^{*}[DBH^2.513]$</td>
<td>26</td>
<td>0.993</td>
<td>Avendaño et al., 2009</td>
</tr>
<tr>
<td>Alnus firmifolia</td>
<td>$[0.009]^{*}[DBH^2.7517]$</td>
<td>16</td>
<td>0.9313</td>
<td>Juárez, 2008</td>
</tr>
<tr>
<td>Cupressus lindleyi</td>
<td>$[0.2637]^{*}[DBH^1.7698]$</td>
<td>18</td>
<td>0.9312</td>
<td>Vigil, 2010</td>
</tr>
<tr>
<td>Pinus hartwegii</td>
<td>$[0.0309]^{*}[DBH^2.4722]$</td>
<td>29</td>
<td>0.9870</td>
<td>Jimenez, 2010</td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>$[0.006]^{*}[DBH^3.038]$</td>
<td>15</td>
<td>0.9900</td>
<td>Bonilla, 2009</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0485]^{*}[DBH^2.3988]$</td>
<td>25</td>
<td>0.9900</td>
<td>Diaz, 2005</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.021]^{*}[DBH^2.6451]$</td>
<td>25</td>
<td>0.9828</td>
<td>Diaz et al., 2007</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[3553.1]^{*}[DBH^2.2245]$</td>
<td>20</td>
<td>0.8730</td>
<td>Palma, 2011</td>
</tr>
<tr>
<td>Quercus laurina</td>
<td>$[0.0196]^{*}[DBH^2.7353]$</td>
<td>14</td>
<td>0.9617</td>
<td>Tomas, 2013</td>
</tr>
</tbody>
</table>
Si bien se observa que existen diferentes ecuaciones alométricas en tanto al tipo de ecuación, es bien conocido que para las estimaciones de biomasa forestal las mejores ecuaciones son de tipo potencial, por lo que estas fueron las ecuaciones seleccionadas y se presentan en la tabla 4.

Tabla 4.
Ecuaciones alométricas de tipo potencial encontradas para las especies presentes en la localidad de San Juan Cuauhtémoc Tlahuapan.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Ecuación</th>
<th>Unidad</th>
<th>Muestra</th>
<th>R^2</th>
<th>MSRes</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus patula</td>
<td>$[0.0329]*[DBH^{2.1683}]$</td>
<td>kg</td>
<td>18</td>
<td>0.9300</td>
<td></td>
<td>Pacheco, 2011</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.1483]*[DBH^{1.3707}]$</td>
<td>kg</td>
<td>18</td>
<td>0.8800</td>
<td></td>
<td>Pacheco, 2011</td>
</tr>
<tr>
<td>Pinus ayacahuite</td>
<td>$[0.6437]*[DBH^{1.6020}]$</td>
<td>kg</td>
<td>58</td>
<td>0.9200</td>
<td></td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.001]*[DBH^{3.954}]$</td>
<td>kg</td>
<td>20</td>
<td>0.8400</td>
<td></td>
<td>Méndez et al., 2011</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.4452]*[DBH^{1.7682}]$</td>
<td>kg</td>
<td>56</td>
<td>0.8900</td>
<td></td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Pseudotsuga menziesii</td>
<td>$[0.2883]*[DBH^{1.7343}]$</td>
<td>kg</td>
<td>21</td>
<td>0.7200</td>
<td></td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Abies religiosa</td>
<td>$[0.0173]*[DBH^{2.7459}]$</td>
<td>kg</td>
<td>10</td>
<td>0.9280</td>
<td></td>
<td>Flores et al., 2011</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0690]*[DBH^{2.4515}]$</td>
<td>kg</td>
<td>58</td>
<td>0.9700</td>
<td></td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0262]*[DBH^{2.6419}]$</td>
<td>kg</td>
<td>18</td>
<td>0.9600</td>
<td></td>
<td>Pacheco, 2011</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.007]*[DBH^{2.975}]$</td>
<td>kg</td>
<td>20</td>
<td>0.9200</td>
<td></td>
<td>Méndez et al., 2011</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.0274]*[DBH^{2.6928}]$</td>
<td>kg</td>
<td>56</td>
<td>0.9700</td>
<td></td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Pseudotsuga menziesii</td>
<td>$[0.0348]*[DBH^{2.5893}]$</td>
<td>kg</td>
<td>21</td>
<td>0.9200</td>
<td></td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Abies religiosa</td>
<td>$[0.0754]*[DBH^{2.513}]$</td>
<td>kg</td>
<td>26</td>
<td>0.9930</td>
<td></td>
<td>Avendaño et al., 2009</td>
</tr>
<tr>
<td>Abies religiosa</td>
<td>$[0.031661]*[DBH^{2.62221}]$</td>
<td>kg</td>
<td>250</td>
<td>1.0000</td>
<td></td>
<td>Rodríguez, 2013</td>
</tr>
<tr>
<td>Alnus firmifolia</td>
<td>$[0.0143]*[DBH^{2.8355}]$</td>
<td>kg</td>
<td>16</td>
<td>0.8795</td>
<td></td>
<td>Juárez, 2008</td>
</tr>
<tr>
<td>Cupressus lindleyi</td>
<td>$[0.5266]*[DBH^{1.7712}]$</td>
<td>kg</td>
<td>18</td>
<td>0.9305</td>
<td></td>
<td>Vigil, 2010</td>
</tr>
<tr>
<td>Pinus ayacahuite</td>
<td>$[0.2893]*[DBH^{2.1569}]$</td>
<td>kg</td>
<td>58</td>
<td>0.9700</td>
<td></td>
<td>Návar, 2009b</td>
</tr>
<tr>
<td>Pinus hartwegii</td>
<td>$[0.0635]*[DBH^{2.4725}]$</td>
<td>kg</td>
<td>29</td>
<td>0.9870</td>
<td></td>
<td>Jimenez, 2010</td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>$[0.013]*[DBH^{3.046}]$</td>
<td>kg</td>
<td>15</td>
<td>0.9900</td>
<td></td>
<td>Bonilla, 2009</td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>$[1.30454]*[DBH^{1.73099}]$</td>
<td>kg</td>
<td>19</td>
<td>0.9900</td>
<td></td>
<td>Rodríguez et al., 2009</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0514]*[DBH^{2.5222}]$</td>
<td>kg</td>
<td>18</td>
<td>0.9827</td>
<td></td>
<td>Pacheco, 2011</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0948]*[DBH^{2.4079}]$</td>
<td>kg</td>
<td>25</td>
<td>0.9900</td>
<td></td>
<td>Díaz, 2005</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.407073]*[DBH^{2.02617}]$</td>
<td>kg</td>
<td>111</td>
<td>0.9800</td>
<td></td>
<td>Rodríguez et al., 2009</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0019]*[DBH^{4.198}]$</td>
<td>kg</td>
<td>30</td>
<td>0.8700</td>
<td></td>
<td>Rodríguez et al., 2012</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$[0.0357]*[DBH^{2.6916}]$</td>
<td>kg</td>
<td>25</td>
<td>0.9828</td>
<td></td>
<td>Díaz et al., 2007</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.35179]*[DBH^{2.1683}]$</td>
<td>kg</td>
<td>18</td>
<td>0.9410</td>
<td>0.031</td>
<td>Aguirre et al., 2011</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.537]*[DBH^{1.882}]$</td>
<td>kg</td>
<td>8</td>
<td>0.8900</td>
<td></td>
<td>Domínguez, 2005</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.003]*[DBH^{3.383}]$</td>
<td>kg</td>
<td>20</td>
<td>0.9000</td>
<td></td>
<td>Méndez et al., 2011</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.7027]*[DBH^{2.1924}]$</td>
<td>kg</td>
<td>20</td>
<td>0.8600</td>
<td></td>
<td>Palma, 2011</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$[0.128495]*[DBH^{2.36444}]$</td>
<td>kg</td>
<td>208</td>
<td>0.9900</td>
<td></td>
<td>Rodríguez et al., 2009</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.40196]*[DBH^{1.933}]$</td>
<td>kg</td>
<td>8</td>
<td>0.9000</td>
<td></td>
<td>Aguirre et al., 2011</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>$[0.508]*[DBH^{1.933}]$</td>
<td>kg</td>
<td>8</td>
<td>0.9000</td>
<td></td>
<td>Domínguez, 2005</td>
</tr>
</tbody>
</table>

Página 31 de 79
La información anterior entre otras cosas sirvió para obtener las claves dicotómicas con las que se identificaron las especies en campo en las cuatro parcelas elegidas dentro de un terreno bien comunal de San Juan Cuauhtémoc, Tlahuapan. Las especies identificadas se presentan en la tabla 5.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Coeficiente</th>
<th>DBH²</th>
<th>Individual</th>
<th>Coeficiente de Determinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus teocote</td>
<td>0.032495</td>
<td>DBH²</td>
<td>209</td>
<td>0.9900</td>
</tr>
<tr>
<td>Pinus teocote</td>
<td>0.2057</td>
<td>DBH²</td>
<td>56</td>
<td>0.9600</td>
</tr>
<tr>
<td>Pseudotsuga menziesii</td>
<td>0.1354</td>
<td>DBH²</td>
<td>21</td>
<td>0.9400</td>
</tr>
<tr>
<td>Quercus laurina</td>
<td>0.0406</td>
<td>DBH²</td>
<td>14</td>
<td>0.9622</td>
</tr>
<tr>
<td>Abies religiosa</td>
<td>0.035</td>
<td>DBH²</td>
<td>26</td>
<td>0.9933</td>
</tr>
<tr>
<td>Alnus firmifolia</td>
<td>0.009</td>
<td>DBH²</td>
<td>16</td>
<td>0.9313</td>
</tr>
<tr>
<td>Cupressus lindleyi</td>
<td>0.2637</td>
<td>DBH²</td>
<td>18</td>
<td>0.9312</td>
</tr>
<tr>
<td>Pinus hartwegii</td>
<td>0.0309</td>
<td>DBH²</td>
<td>29</td>
<td>0.9870</td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>0.006</td>
<td>DBH²</td>
<td>15</td>
<td>0.9900</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>0.0485</td>
<td>DBH²</td>
<td>25</td>
<td>0.9900</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>0.021</td>
<td>DBH²</td>
<td>25</td>
<td>0.9828</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>3553.1</td>
<td>DBH²</td>
<td>20</td>
<td>0.8730</td>
</tr>
<tr>
<td>Quercus laurina</td>
<td>0.0196</td>
<td>DBH²</td>
<td>14</td>
<td>0.9617</td>
</tr>
</tbody>
</table>

8.3. Especies identificadas en campo en un terreno bien comunal de San Juan Cuauhtémoc, Tlahuapan

La información anterior entre otras cosas sirvió para obtener las claves dicotómicas con las que se identificaron las especies en campo en las cuatro parcelas elegidas dentro de un terreno bien comunal de San Juan Cuauhtémoc, Tlahuapan. Las especies identificadas se presentan en la tabla 5.

Tabla 5.

<table>
<thead>
<tr>
<th>Especies presentes en un terreno bien comunal de San Juan Cuauhtémoc, Tlahuapan</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies religiosa</td>
<td></td>
</tr>
<tr>
<td>Pinus patula</td>
<td></td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td></td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
8.4. Ecuaciones seleccionadas y estimación de la biomasa

Para las especies encontradas en las 4 parcelas dentro de un terreno bien comunal, se seleccionaron aquellas ecuaciones alométricas con mejor valor de R^2, las cuales se presentan en la tabla 6.

Tabla 6.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Ecuación</th>
<th>R^2</th>
<th>Muestra</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies religiosa</td>
<td>$(0.031661)*(x^{2.62221})$</td>
<td>1.000</td>
<td>250</td>
<td>Rodríguez, 2013</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>$(0.407073)*(x^{2.02617})$</td>
<td>0.980</td>
<td>111</td>
<td>Rodríguez et al., 2009</td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>$(0.013)*(x^{3.046})$</td>
<td>0.990</td>
<td>19</td>
<td>Rodríguez et al., 2009</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>$(0.128495)*(x^{2.36444})$</td>
<td>0.990</td>
<td>208</td>
<td>Rodríguez et al., 2009</td>
</tr>
</tbody>
</table>

8.5. Estimación de la biomasa por parcelas

La biomasa por parcela se estimó en un total de 15120.12 kg con una media 487.74 kg ± 25.00 Kg de biomasa para la parcela 1, la cantidad de carbono secuestrado se estimó en 7560.06 kg o 7.56 toneladas de carbono lo que equivale en dinero a un valor comprendido dentro del rango de los $5907.53 - $11815.07. En la parcela 2 la biomasa total fue de 21079.09 kg con una media de 468.42kg ± 14.84 Kg de biomasa, la cantidad de carbono secuestrado fue de 10539.545 kg o 10.53 toneladas de carbono que equivale a un valor de $8236.02 - $16471.93. En la parcela 3 la biomasa total fue de 48750.40 Kg, con una media de 617.09 Kg ± 11.43 Kg y la cantidad de carbono secuestrado fue de 24375.2 kg o 24.37 toneladas de carbono que equivale en dinero a $19043.69 - $38087.14. Finalmente, en la parcela 4, la biomasa total fue de 22372.74 Kg con una media de 302.33 Kg ± 4.70 Kg, y la cantidad de carbono secuestrado fue de 11186.37 kg o 11.18 toneladas de carbono que equivale a $8741 - $17482. Los datos estadísticos se muestran en la tabla 7 y 8.

Tabla 7.

<table>
<thead>
<tr>
<th>#</th>
<th>Especies</th>
<th>Mín. (kg)</th>
<th>Máx. (kg)</th>
<th>Media (kg)</th>
<th>SE (kg)</th>
<th>Árboles</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abies Religiosa</td>
<td>0.1071</td>
<td>2538.61</td>
<td>487.74</td>
<td>139.24</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>#</td>
<td>Biomasa total (kg)</td>
<td>Carbono total (T)</td>
<td>Media (Kg)</td>
<td>SE (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15120.12</td>
<td>7.56</td>
<td>487.74</td>
<td>139.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21079.09</td>
<td>10.53</td>
<td>468.42</td>
<td>101.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48750.40</td>
<td>24.37</td>
<td>617.09</td>
<td>103.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22372.74</td>
<td>11.18</td>
<td>302.33</td>
<td>40.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8.

De estos resultados se encontró que las parcelas 1, 2, 4 y 3 de forma ascendente, fueron las que presentaron más biomasa.

La información encontrada es interesante ya que la parcela 1 fue la que presentó menor cantidad de individuos 31, todos ellos pertenecientes a *Abies religiosa*, mientras que la parcela 2 presentó 26 *Abies religiosa* y 18 de *Pinus montezumae*, por su parte, la parcela 3 presento 50 *Abies religiosa*, 22 *Pinus montezumae*, y 5 *Pinus pseudostrobus*. Ahora, si se compara el número de individuos de la parcela 3 con los de la parcela 4 se puede ver que la cantidad de individuos total es similar, ya que hay 77 árboles en la parcela 3 y 74 en la parcela 4, aunque las frecuencias para cada especie cambian, lo cual se puede ver en las frecuencias por especie 7 *Abies religiosa*, 43 *Pinus Patula* y 24 *Pinus montezumae* en la parcela 4 y 50 *Abies religiosa*, 22 *Pinus montezumae* y 5 *Pinus...
Pseudostrobus en la parcela 3. Observando la figura 2 se aprecia que *Pinus pseudostrobus* es la especie que presentó valores de DAP más altos, seguido de *Pinus montezumae, Abies religiosa* y *Pinus patula*, y tomando en cuenta que el DAP está relacionado con la edad de los árboles y la producción de biomasa, entonces, se puede decir que los árboles con mayor tiempo y mayor cantidad de biomasa producida son *Pinus pseudostrobus* como se aprecia en las figuras 2 y 3. Y la mayor cantidad de *Abies religiosa* en la parcela 3 que en la parcela 4, y que estos sean de mayor en DAP y biomasa; al igual los *Pinus montezumae* de mayor diámetro y producción de la biomasa que los de la parcela 4 explica el porqué de que haya más biomasa en una parcela que en otra. Sin embargo, si se observa la figura 4, se puede apreciar que *Pinus patula* produce mayor cantidad de biomasa que *Abies religiosa* para cualquier valor de DAP, por lo que debería de contribuir a que hubiera mayor cantidad de biomasa en la parcela 4, pero como se aprecia en la figura 2 y 3 los diámetros de la especie *Pinus patula* son menores que los de *Abies religiosa* debido a que son individuos más jóvenes, esto se puede ver en las gráficas de cajas y bigotes de la figura 5 y 6 así como en la tabla 9 donde se muestra la distribución de los valores en cuartiles para cada especie de conífera. En la figura 4 también se puede observar que de las cuatro coníferas encontradas en las parcelas *Pinus pseudostrobus* es la que mayor cantidad de biomasa produce para valores de DAP superiores a 40 cm de DAP, en comparación de las otras tres coníferas, mientras que *Pinus montezumae* es la conífera que produce más biomasa para valores inferiores a los 40 cm de DAP incluso que *Pinus pseudostrobus*, mientras que en tercero y cuarto lugar se encuentran *Abies religiosa* y *Pinus patula*, lo que se puede ver aplicando una prueba Kruskal/Wallis para ver las diferencias por estimación de ecuaciones, así difiere *Pinus pseudostrobus* con *Abies religiosa* y *Pinus patula*, mientras que *Pinus montezumae* difiere con *Abies religiosa* y *Pinus patula* como se muestra en la tabla 10.

La información presentada es interesante a considerar para futuros estudios, ya que si el muestreo se hace representativo para las 1037.81 ha se podría identificar cuáles son las especies que se presentan con mayor frecuencia, las de más rápido crecimiento, y cuáles son las que producen mayor cantidad de biomasa. Esto puede ser tomado en cuenta para la propagación de especies prioritarias que puedan producir gran cantidad de biomasa, secuestrar carbono, que tengan crecimiento rápido.
Figura 2. Diámetro a un 1.30 por especie y parcela. Se presentan los boxplot del diámetro por especie y parcela. Se puede observar que la especie que presentó una mayor media del diámetro es Pinus pseudostrobus, seguido de Pinus montezumae, después Abies religiosa y Pinus patula, esto explica el tamaño de los árboles en las parcelas. Siendo los Pinus pseudostrobus los árboles más grandes, y Pinus patula los más pequeños. Los que presentaron mayor variabilidad fueron Pinus montezumae y Abies religiosa. También se puede observar que Abies religiosa fue la especie que más frecuencia tuvo mientras que Pinus pseudostrobus y Pinus patula tuvieron menor frecuencia.

Biomasa estimada por especie y parcela

Figura 3. Biomasa estimada por especie y parcela. Se presentan los boxplot de la biomasa por especie y parcela. Se puede observar que la especie que presentó una mayor media de la biomasa es Pinus pseudostrobus, seguido de Pinus montezumae, después Abies religiosa y Pinus patula. La especie que produce mayor biomasa en las pacerlas estudiadas fue Pinus pseudostrobus,
aunque es una de las especies que se encuentra con menor frecuencia, mientras que Abies religiosa es una de las especies con mayor frecuencia y pero produce menor biomasa.

Tabla 9.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Variable Dasométrica</th>
<th>Mín.</th>
<th>Máx.</th>
<th>Media</th>
<th>SE</th>
<th>No. Árboles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies religiosa</td>
<td>Diámetro 1.30 (cm)</td>
<td>1.56</td>
<td>74.16</td>
<td>25.88</td>
<td>2.01</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Biomasa (kg)</td>
<td>0.10</td>
<td>2528.61</td>
<td>367.16</td>
<td>65.15</td>
<td></td>
</tr>
<tr>
<td>Pinus montezumae</td>
<td>Diámetro 1.30 (cm)</td>
<td>7.63</td>
<td>90.08</td>
<td>34.29</td>
<td>2.74</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Biomasa (kg)</td>
<td>44.06</td>
<td>3154</td>
<td>703.33</td>
<td>98.69</td>
<td></td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>Diámetro 1.30 (cm)</td>
<td>53.16</td>
<td>78.62</td>
<td>70.09</td>
<td>1.33</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Biomasa (kg)</td>
<td>1545</td>
<td>3898</td>
<td>3059</td>
<td>23.93</td>
<td></td>
</tr>
<tr>
<td>Pinus patula</td>
<td>Diámetro 1.30 (cm)</td>
<td>4.13</td>
<td>36.60</td>
<td>18.69</td>
<td>1.33</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Biomasa (kg)</td>
<td>7.23</td>
<td>599.35</td>
<td>187.63</td>
<td>23.93</td>
<td></td>
</tr>
</tbody>
</table>
Figura 5. Diámetro a la altura del pecho por especie. Los árboles con mayor diámetro a la altura del pecho fueron *Pinus pseudostrobus* aunque fue el que tuvo menor frecuencia de aparición, mientras *Abies religiosa* tuvo mayor frecuencia de aparición que *Pinus montezumae* y *Pinus patula* que tuvieron una frecuencia similar.

Figura 6. Biomasa estimada. Los árboles que producen más biomasa son los *Pinus pseudostrobus* sin embargo, son los que aparecen con menor frecuencia, por otra parte, *Abies religiosa* producen mucho menos biomasa que *Pinus montezumae*, pero tienen más frecuencia de aparición, mientras que *Pinus patula* tiene una frecuencia similar a *Pinus montezumae* pero produce mucho menor cantidad de biomasa.
Tabla 10.

<table>
<thead>
<tr>
<th>Kruskal Wallis p/valor</th>
<th>Comparaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro</td>
<td></td>
</tr>
<tr>
<td>2.656e-06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Abies religiosa</th>
<th>Pinus montezumae</th>
<th>Pinus patula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus montezumae</td>
<td>0.0162</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>0.3951</td>
<td>0.0005</td>
<td>-</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>0.0015</td>
<td>0.0709</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Abies religiosa</th>
<th>Pinus montezumae</th>
<th>Pinus patula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus montezumae</td>
<td>5.1e-07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>0.9789</td>
<td>0.0001</td>
<td>-</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>0.0001</td>
<td>0.1496</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

8.6. Simulación de valores de biomasa dados los valores de DAP

La estimación del valor MS_{Res} se realizó mediante la simulación de pseudo/datos para cada una de las ecuaciones por especie encontrada, estos se presentan en las gráficas 7, 8, 9 y 10. Nickless (2011) dice que los valores de $\beta_0 + \beta_1$ y R^2 y la n muestral son insuficientes, en ausencia de los valores reales de biomasa y DAP, para conocer el valor real de MS_{Res} de las ecuaciones alométricas, sin embargo es posible aproximarse al conocimiento de MS_{Res} a través del uso de valores simulados o pseudo/datos que proporcionan información sobre el comportamiento de los valores reales de biomasa y DAP cuando están ausentes como menciona Wayson et al. (2015), esto se puede ver en la tabla 11 que muestra los valores originales de $\beta_0 + \beta_1$ y R^2 de las ecuaciones alométricas comparados con los valores de la pseudo/ecuaciones. Así se puede apreciar como los valores reales de $\beta_0 + \beta_1$ y R^2 de las ecuaciones alométricas originales están entre el segundo y tercer cuartil de los valores generados por la simulación de pseudo/datos, lo que refleja el nivel de precisión y exactitud de los pseudo/datos ya que la media es cercana al valor real y la dispersión no
es grande, con esto se puede calcular el valor MS_{Res} que es representativo para las ecuaciones alométricas originales como se puede ver en la tabla 11.

Tabla 11.

<table>
<thead>
<tr>
<th>Valores</th>
<th>Abies religiosa</th>
<th>Pinus Patula</th>
<th>Pinus montezumae</th>
<th>Pinus pseudostrobus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pseudo</td>
<td>Original</td>
<td>Pseudo</td>
<td>Original</td>
</tr>
<tr>
<td>R^2</td>
<td>Media 0.9999</td>
<td>1</td>
<td>0.9815</td>
<td>0.9800</td>
</tr>
<tr>
<td></td>
<td>Q2 0.9998</td>
<td>0.9377</td>
<td>0.9725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q3 0.9999</td>
<td>0.9923</td>
<td>0.9996</td>
<td></td>
</tr>
<tr>
<td>MS_{Res}</td>
<td>Media 0.0001</td>
<td>0.0341</td>
<td>0.0282</td>
<td>0.0075</td>
</tr>
<tr>
<td></td>
<td>Q2 8.93e-05</td>
<td>0.0116</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q3 3.45e-04</td>
<td>0.1343</td>
<td>0.1547</td>
<td></td>
</tr>
<tr>
<td>β_0</td>
<td>Media 0.0308</td>
<td>0.0316</td>
<td>0.2548</td>
<td>-0.066</td>
</tr>
<tr>
<td></td>
<td>Q2 0.0083</td>
<td>-0.2408</td>
<td>-1.244</td>
<td>-0.3202</td>
</tr>
<tr>
<td></td>
<td>Q3 0.0524</td>
<td>0.5874</td>
<td>0.8043</td>
<td>0.2825</td>
</tr>
<tr>
<td>β_1</td>
<td>Media 2.6224</td>
<td>2.6222</td>
<td>2.0666</td>
<td>2.0261</td>
</tr>
<tr>
<td></td>
<td>Q2 2.6165</td>
<td>1.9769</td>
<td>2.8295</td>
<td>2.3223</td>
</tr>
<tr>
<td></td>
<td>Q3 2.6285</td>
<td>2.2009</td>
<td>3.3898</td>
<td>2.4871</td>
</tr>
</tbody>
</table>
Figura 7. Valores de R^2 según el factor de escala usado y pseudo/datos. Se aprecia en la primera gráfica que la línea rojo horizontal marca el valor del R^2 original de la ecuación alométrica, mientras que la línea vertical identifica el factor de escala en el que se dio el mejor conjunto de pseudo/datos con valor similar al R^2 de la ecuación original. En la segunda gráfica se muestra los pseudo/datos simulados 10000 distribuidos en las diferentes clases diamétricas. La dispersión para *Abies religiosa* no incrementa mucho para valores altos de biomasa.

Figura 8. Valores de R^2 según el factor de escala usado y pseudo/datos. Se aprecia en la primera gráfica que la línea rojo horizontal marca el valor del R^2 original de la ecuación alométrica, mientras que la línea vertical identifica el factor de escala en el que se dio el mejor conjunto de pseudo/datos con valor similar al R^2 de la ecuación original. En la segunda gráfica se muestra los
pseudo/datos simulados 10000 distribuidos en las diferentes clases diamétricas. La dispersión para *Pinus patula* presenta un mayor incremento mayor a mayores valores altos de biomasa.

Figura 9. Valores de R^2 según el factor de escala usado y pseudo/datos. Se aprecia en la primera gráfica que la línea rojo horizontal marca el valor del R^2 original de la ecuación alométrica, mientras que la línea vertical identifica el factor de escala en el que se dio el mejor conjunto de pseudo/datos con valor similar al R^2 de la ecuación original. En la segunda gráfica se muestra los pseudo/datos simulados 10000 distribuidos en las diferentes clases diamétricas. La dispersión para *Pinus montezumae* presenta un mayor incremento mayor a mayores valores altos de biomasa.

Figura 10. Valores de R^2 según el factor de escala usado y pseudo/datos. Se aprecia en la primera gráfica que la línea rojo horizontal marca el valor del R^2 original de la ecuación alométrica, mientras que la línea vertical identifica el factor de escala en el
que se dio el mejor conjunto de pseudo/datos con valor similar al R^2 de la ecuación original. La dispersión para *Pinus pseudostrobus* presenta un mayor incremento mayor a mayores valores altos de biomasa, aunque el incremento no es tan drástico.

IX. Conclusión

Se puede resaltar la importancia que ha tenido este trabajo para localizar errores en la nomenclatura taxonómica de bases de datos disponibles y la manera de corregirlos de forma automática a través del lenguaje de programación R para tener una base de datos confiable. Se ha desarrollado la metodología en la que se puede hacer uso de ecuaciones alométricas ya existentes a través de su selección para la estimación de biomasa y carbono secuestrado en lugares donde no se han desarrollado ecuaciones. Esto resulta particularmente importante en las áreas de marginación y pobreza donde no es posible desarrollar ecuaciones propias de la zona. Por otra parte, la simulación de pseudo datos permite calcular el valor de MS_{Res} para las estimaciones de biomasa por especie, esto es importante ya que es indispensable para acceder a los programas de pagos por servicios ambientales. De esta forma el uso de simulación de pseudo datos proporciona información útil sobre el comportamiento de los valores de biomasa respecto al DAP por ecuación alométrica. Lo anterior resulta en estimaciones de biomasa que puedan ser hechas con su respectivo valor de MS_{Res} por hectárea, y que de esta forma se benefician las personas que viven en las comunidades cercanas.

Por otra parte, es impórtante resaltar el papel que tiene cada especie en la producción de biomasa y secuestro de carbono, como es el caso de *Pinus montezumae* que produce y secuestra más biomasa y carbono respectivamente, mientras que otras especies son de mayor distribución como en este caso *Abies religiosa* y por otra parte existen especies que a periodos de tiempo largo producen y secuestran mayor cantidad de biomasa y carbono respectivamente, aunque en periodos de tiempo corto no lo hacen. Por lo que algunas especies pueden ser prioritarias para los programas de pagos por servicios ambientales, sin embargo, aún es necesario desarrollar más trabajos al respecto, lo que permitiría establecer la relación existente entre especies primordiales para la producción de biomasa y secuestro de carbono y especies importantes para la biodiversidad de especies.

El problema abordado en este trabajo es reciente y apenas se empieza a investigar por lo que abordarlo demuestra la complejidad en materia ambiental al tener que investigar de forma multidisciplinar, ya que resulta de la problemática de temas en biología, estadística, ciencias sociales y economía.
X. Anexo A

10.1. Análisis de problemas de nomenclaturas en el uso de inventarios forestales: resultados obtenidos para el municipio de Tlahuapan.

10.1.1. Aspectos teóricos

10.1.1.1. Importancia de los inventarios forestales para la estimación de la biomasa

Para estimar la biomasa es necesario conocer cierta información de los recursos forestales, en México la Ley General de Desarrollo Forestal Sustentable (LGDFS) (2003) establece que se deben realizar las evaluaciones de los recursos forestales integrando la información estadística y cartográfica que considere la dinámica del cambio de vegetación forestal, así como la valoración de los servicios ambientales y sus impactos para lo que se realizan inventarios forestales nacionales y estatales que sirven para localizar y cuantificar las diferentes áreas forestales existentes; calcular la existencia de madera y el incremento de volumen en coníferas; obtener información ecológica silvícola; evaluar los daños en bosques y selvas; actualizar la información estadística y cartográfica de la superficie forestal y su delimitación por tipo de vegetación, formaciones y clases de uso; proporcionar información básica de los recursos forestales para la planeación y toma de decisiones; determinar la posibilidad de producción de madera en forma sostenible tanto para el consumo rural, como para abastecer a las industrias forestales; clasificar y delimitar las zonas de conservación, restauración y producción, en los terrenos forestales de acuerdo con las características y funciones de los recursos silvícolas; establecer sistemas permanentes de actualización de la información que permitan desarrollar las capacidades de las dependencias gubernamentales para realizar evaluaciones periódicas y monitorear los ecosistemas forestales, así como para apoyar las políticas, programas y proyectos que se realizan; recabar las variables dasométricas solicitadas para la estimación del volumen, biomasa aérea, incremento medio anual y el número de árboles dañados en los diferentes ecosistemas del país para la generación de reportes nacionales estatales y regionales acorde a la situación actual de los recursos forestales; determinar las características cualitativas y cuantitativas de los recursos forestales como apoyo a la política forestal nacional y por último obtener los indicadores de degradación del suelo en el territorio nacional (Comisión Nacional Forestal, 2009 y 2015). La información generada en los inventarios está disponible a nivel nacional, estatal y municipal, a partir de la cual se puede conocer los nombres de las especies de árboles existentes y sus valores dasométricos (altura, diámetro a la altura del...
pecho, cobertura de la copa y densidad de la madera) con lo que se pueden realizar las estimaciones de biomasa y de C por especie. Sin embargo, se deben tener ciertas consideraciones ya que la información muchas veces presenta variabilidad en el tamaño y forma de las parcelas; el número y la edad mínima de los árboles y errores de nomenclatura taxonómica que pueden originar problemas de sobre estimación de la biodiversidad, sesgos de estimaciones de biomasa por especie y de variabilidad en los valores dasométricos. Estos problemas se deben principalmente a las decisiones históricas que han intentado compensar la asignación de recursos humanos, económicos y de tiempo para incrementar la precisión de estimaciones por puntos contra la necesidad de hacer mediciones a gran escala (Burslem y Ledo, 2015).

10.1.1.2. Problemas con registros en bases de datos biológicas como son los inventarios forestales nacionales y estatales

Cuando se crea una base de datos con registros biológicos como sucede en los inventarios forestales nacionales y estatales, es necesario que los organismos vistos en campo sean identificados correctamente para asignarles el nombre de la especie que les corresponde y después ser registrados en la base de datos. Si las identificaciones de los organismos son correctas entonces la base de datos será confiable en medida de la cantidad de aciertos que se tengan (Jansen, y Dengler, 2010). Sin embargo, a menudo se suelen presentar errores en las identificaciones y omisión de registros que son difíciles de corregir en etapas posteriores; lo que se debe principalmente a la falta de preparación del personal (Chapman, 2005; Jansen, y Dengler, 2010; Scott, y Hallam, 2002). Otro tipo de errores que se presentan son los sesgos geográficos, espaciales y nomenclaturales taxonómicos que se dan debido a la heterogeneidad de las fuentes de datos que se usan para crear bases de datos (Chapman, 2005; Cayuela, Granzow-de la Cerda, Albuquerque, and Golicher, 2012; Jansen, y Dengler, 2010). Los problemas de sesgo geográfico y espacial han sido abordados con amplitud en la literatura científica, sin embargo, los problemas de nomenclatura taxonómica han sido pobremente atendidos (Chapman, 2005; Cayuela et al, 2012).

El uso de los datos y su análisis estadístico con erróneos nomenclaturales y taxonómicos sin las debidas correcciones produce errores de estimación de la abundancia y diversidad de especies de una región (Cayuela et al, 2012; IAPT, 2018; CIN, 2018; ICN, 2018; TPL, 2018).
10.1.1.2.1. Errores nomenclaturales

Los principales problemas taxonómicos se dan por el uso de un mismo nombre para diferentes taxones (homónimos taxonómicos) o al uso de diferentes nombres que son aplicados a una misma entidad como son los nombres ilegítimos, los sinónimos homotípicos y los sinónimos heterotípicos (Jansen, y Dengler, 2010; Trejo-Torres, 2012). En la nomenclatura botánica se sabe que de todos los nombres de especies de plantas registrados en total en las bases de datos, el 33.0% son nombres aceptados, el 42.2% son sinónimos, y el 22.8% están sin resolver, de éstos, los sinónimos son lo que representan la mayor problemática, aparte también existen los errores causados por asignar nombres incorrectos (identificación errónea) (Cayuela et al, 2012; IAPT, 2018; ICN, 2018; The Plant List [TPL], 2013; Trejo-Torres, 2012). En general los sinónimos son nombres que tuvieron orígenes diferentes y que en algún momento fueron nombres aceptados para referirse a una unidad taxonómica. Por ejemplo, el sinónimo heterotípico, subjetivo o taxonómico resulta de la publicación múltiple e independiente que hicieron diferentes autores en diferentes regiones sobre la misma especie de planta, pero que cambiaron el epíteto en el nombre de la especie (Trejo-Torres, 2012). Entonces para establecer cuál de los diferentes nombres sinónimos será el nombre aceptado se suele seleccionar aquel que sea el más antiguo. Por otra parte, el sinónimo homotípico, objetivo o nomenclatural se da como resultado del cambio en la posición taxonómica de una especie que se ubica en un género y que pasa a otra categoría de género o a otras categorías taxonómicas de diferente nivel taxonómico, caso en el que se cambia el nombre genérico y se mantiene el epíteto, además en estos casos puede ser necesario el ajuste de la terminación al sexo que le corresponda del nuevo género de acuerdo con las terminaciones en latín para la nomenclatura taxonómica (ICN, 2018; Trejo-Torres, 2012). En lo que se refiere a los nombres incorrectos, se puede decir que son aquellos nombres que han sido mal aplicados en algún momento del pasado en alguna obra botánica para referirse a una especie de planta pero que de hecho no corresponde con la especie de interés (Trejo-Torres, 2012). Para solucionar los problemas la Asociación Internacional para la Taxonomía de las Plantas por su nombre en inglés International Association for Plant Taxonomy (IAPT) (2014, 2018) https://www.iaptglobal.org se encarga de mantener una estructura estable y clara de la nomenclatura en la taxonomía, la IAPT desarrolla y actualiza el Código Internacional de Nomenclatura por su nombre en inglés International Code of Nomenclature (Shenzhen code) (ICN) https://www.iapt-taxon.org/nomen/main.php, que es el conjunto de reglas y recomendaciones acordadas internacionalmente que rigen la nomenclatura.
para el nombramiento de algas, hongos y plantas (International Association for Plant Taxonomy [IAPT], 2018, International Code of Nomenclature for algae, fungi, and plants [ICN], 2018). El ICN proporciona un método estable para denominar a los grupos taxonómicos, evitando y rechazando el uso de nombres que puedan llegar a generar confusión, así como hacer las correcciones gramaticales, la regularidad o eufonía de los nombres y, el uso más o menos predominante, para ello el ICN estipula que cada taxón debe tener un solo nombre asignado, con excepción en algunos casos (ICN, 2018). Y estipula que en aquellas situaciones en las que existen varios nombres que son usados para designar a una misma entidad, se elija un solo nombre (generalmente el más antiguo) de todos los existentes, que pasa a ser asignado como el nombre aceptado de la unidad taxonómica, mientras que los nombres restantes pasan a ser designados como sinónimos del nombre aceptado (IAPT, 2018; ICN, 2018; Jansen, y Dengler, 2010).

10.1.1.2.2. Resolución de problemas nomenclaturales

Para poder resolver los problemas respecto a la nomenclatura taxonómica es necesaria la revisión de los cambios que ocurren en los nombres particulares de una especie de planta en los cientos de miles de listas de flora y de las verificaciones que existen sobre la especie de interés en el mundo y que rara vez llegan a ser congruentes (Jansen, y Dengler, 2010). Para ello se han desarrollados sistemas que integren las diferentes listas de floras de diferentes regiones en bases de datos electrónicas, tal como The international Plant Names Index www.ipni.org/, Trópicos www.tropicos.org/, The Plant List www.theplantlist.org/, Taxonomic Name Resolution Services v4.0 http://tnrs.iplantcollaborative.org/TNRSapp.html y la Global Index of Vegetation Plot Databases https://www.givd.info/databases.xhtml, éstas son las bases de datos más reconocidas a nivel mundial que contienen la información sobre la nomenclatura y taxonomía de cada especie de planta registrada y las cuales pueden ser usadas como bases de datos para corregir los errores de nomenclatura taxonómica y así normalizar los nombres de las especies en los registros de bases de datos como los inventarios forestales nacionales y estatales, sin embargo el proceso de corrección de los errores de la nomenclatura taxonómica especie por especie requiere de mucho tiempo, y aun así se pueden cometer errores de tipo humano (Chapman, 2005).

10.1.2. Aspectos metodológicos
10.1.2.1. Obtención de los registros de especies de árboles de coníferas presentes en los bienes comunales de San Juan Cuauhtémoc, Tlahuapan

Se consulto el Inventario Nacional Forestal y de Suelos (INFyS), el Inventario Estatal Forestal y de Suelos del estado de Puebla (IEFySP) y los datos generados por personal técnico de la Comisión Nacional Forestal (CONAFOR) de la localidad de San Juan Cuauhtémoc (CONAFOR, 2014, 2015).

A partir de la información obtenida del INFyS se obtuvieron los registros de las especies de árboles reportadas para cada uno de los estados de México y de cada uno de los municipios por estado. Se selecciono y filtro solamente la información necesaria para el estado de Puebla, siendo de gran interés la información de los registros de las especies de árboles por cada uno de los municipios del estado de Puebla, de la cual se seleccionó aquella respecto al municipio de Tlahuapan. La información anterior fue comparada con la información del IEFySP, y a partir de ello se obtuvo un listado de las especies existentes en el estado de Puebla, en especial para el municipio de Tlahuapan y la localidad de San Juan Cuauhtémoc, que fue complementado con información del personal técnico de la Comisión Nacional Forestal para los bienes comunales de San Juan Cuauhtémoc (CONAFOR, 2009, 2014, 2015).

10.1.2.2. Corrección taxonómica de las especies de árboles obtenidas

Para la corrección taxonómica de los registros de especies presentes en la lista de especies que se realizó a partir de las fuentes del INFyS y del IEFySP se usó la bases de datos disponible de internet The Plant List (TPL) (2018) versión 1.1 http://www.theplantlist.org/, a través de la paquetería de Taxonstand, para el software de lenguaje de programación R y RStudio. Con dicha paquetería de forma automatizada se compararon los registros de las especies de coníferas que se obtuvieron con la base de datos de TPL, de esta manera se corrigió a nivel taxonómico de género y especie errores ortográficos, así como nombres sinónimos a nombres aceptados (R Core Team, 2018; R Studio Team, 2018).

10.1.2.3. Obtención de las categorías taxonómicas de las especies

Para conocer que especies de la lista corregida eran coníferas y cuales no lo eran fue necesario identificar las categorías taxonómicas de cada uno de los registros, para ello se usó la base de datos
de Tropicos (2018) http://www.tropicos.org/Home.aspx, a través de la plataforma de Taxonomic Name Resolution Service v4.0 (TNRS v4.0) (2018) http://tnrs.iplantcollaborative.org/, que permite meter varios registros en forma de lista y obtener las categorías taxonómicas para cada uno de ellos. Con la información obtenida se pudo distinguir las especies de coníferas pertenecientes a San Juan Cuauhtémoc Tlahuapan

10.1.3. Resultados

10.1.3.1. Corrección de la nomenclatura taxonómica de las especies

De los 465 registros de la lista de especies de árboles registrados en el estado de Puebla a partir del INFyS y del IEFySP, se obtuvieron 374 (80.43%) registros correctos a nivel de familia, 451 (96.99%) a nivel de género, 425 (91.40%) a nivel de especie o epíteto. Los registros corregidos fueron 91 (19.57%) a nivel de familia, 14 (3.01%) a nivel de género y 40 (8.60%) a nivel de especie o para el epíteto, como se muestra en la tabla A1.

<table>
<thead>
<tr>
<th></th>
<th>Familia</th>
<th>% de Categoría</th>
<th>Género</th>
<th>% de Categoría</th>
<th>Epíteto</th>
<th>% de Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctos</td>
<td>374</td>
<td>80.43%</td>
<td>451</td>
<td>96.99%</td>
<td>425</td>
<td>91.40%</td>
</tr>
<tr>
<td>Incorrectos</td>
<td>91</td>
<td>19.57%</td>
<td>14</td>
<td>3.01%</td>
<td>40</td>
<td>8.60%</td>
</tr>
<tr>
<td>Total</td>
<td>465</td>
<td>100%</td>
<td>465</td>
<td>100%</td>
<td>465</td>
<td>100%</td>
</tr>
</tbody>
</table>

Estas correcciones son importantes ya que evitan la sobre estimación de la diversidad y abundancia de especies, lo que permite que los datos obtenidos a partir de bases de datos biológicas como los inventarios forestales nacionales sean útiles para el conocimiento de las especies presentes en un área de estudio. Además, las comparaciones con bases de datos internacionales hechas con R y Taxonstand reducen los costos en tiempo y esfuerzo de corrección de nomenclatura taxonómica. Como se aprecia en la tabla 2, los errores de nomenclatura ocurren a diferentes niveles taxonómicos como especie, género, y familia, lo que dificulta su corrección y aumenta el costo de tiempo y esfuerzo si el procedimiento se hiciera en forma manual con revisión de las actas botánicas y la comparación en los cientos o miles de listas existentes. Por último, se tiene que los valores obtenidos son confiables cuando se usa R, Taxonstand y las bases de datos
The Plant List y Tropicos, ya que estas bases de datos están supervisadas por expertos en el área de la botánica.

10.1.3.2. Identificación de las categorías taxonómicas para las especies del estado de Puebla, municipio de Tlahuapan y los bienes comunales de la localidad de San Juan Cuauhtémoc

Las categorías taxonómicas que se encontraron para los registros de las especies se presentan en la tabla A2.

<table>
<thead>
<tr>
<th>Clase</th>
<th>Subclase</th>
<th>Superorden</th>
<th>Orden</th>
<th>Familia</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>10</td>
<td>35</td>
<td>76</td>
<td>227</td>
<td>425</td>
</tr>
</tbody>
</table>

Esta información es importante ya que de no ser especialista en botánica resulta difícil distinguir a cada especie con sus niveles de categorías taxonómicas de mayor jerarquía, lo cual es importante cuando se quiere trabajar con un grupo taxonómico a nivel de familia, orden, superorden, subclase, clase, etc. Además, una de las ventajas de identificar las categorías taxonómicas es la de poder encontrar información útil para cada taxón, como el caso de las claves dicotómicas que son muy útiles para la identificación de especies en campo, y que a veces requiere de un esfuerzo en conocimiento y tiempo para encontrar dicha información. Por lo tanto, la identificación de las categorías taxonómicas a través del uso de las bases de datos sirve para agilizar el tiempo en el que se puede obtener la información de un grupo taxonómico, lo que proporciona una ventaja en información y en preparación a la hora de ir a campo.

En el presente trabajo se identificaron las siguientes los nombres de varios taxones a diferentes categorías taxonómicas, los cuales se presentan en la tabla A3.

<table>
<thead>
<tr>
<th>Clase</th>
<th>Subclase</th>
<th>Superorden</th>
<th>Orden</th>
</tr>
</thead>
</table>

Tabla A3.
<table>
<thead>
<tr>
<th>Clase</th>
<th>Subclase</th>
<th>Familia</th>
<th>Subfamilia</th>
<th>Ordenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equisetopsida</td>
<td>Magnoliidae</td>
<td>Asteranae</td>
<td>Dipsacales</td>
<td>3</td>
</tr>
<tr>
<td>Pinidae</td>
<td></td>
<td>Myrothamnanae</td>
<td>Saxifragales</td>
<td>3</td>
</tr>
<tr>
<td>Gnetidae</td>
<td></td>
<td>Rosanae</td>
<td>Sapindales</td>
<td>3</td>
</tr>
<tr>
<td>Cycadidae</td>
<td></td>
<td>Magnolianae</td>
<td>Magnoliales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Austrobaileyanae</td>
<td>Gentianales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dillenianae</td>
<td>Apiales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santalanae</td>
<td>Fagales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ranunculanae</td>
<td>Lamiales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteanae</td>
<td>Malvales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caryophyllanae</td>
<td>Boraginales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Malpighiales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rosales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brassicales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Celastrales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chloranthales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ericales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asterales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solanales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cupressales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dilleniales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Huerteales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ephedrales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laurales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Icacinales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fabales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Myrtales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Santalales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ranunculales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pinales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piperales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Proteales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Podocarpales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cayophyllales</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cycadales</td>
<td>3</td>
</tr>
</tbody>
</table>

A pesar de que hay 35 órdenes, sólo 3 corresponden a la subclase pinidae (coníferas) que incluye a los órdenes cupressales, pinales y podocarpales, los otros 30 órdenes corresponden a la subclase magnoliidae (latifoliadas), mientras que sólo hay 1 orden que pertenece a gnetidae y otro que pertenece a cycadidae, ambos son grupos hermanos de pinidae.
Para la localidad de San Juan Cuauhtémoc Tlahuapan las familias, géneros y especies registradas se presentan en la tabla A4.

Tabla A4.

<table>
<thead>
<tr>
<th>División</th>
<th>Familia</th>
<th>Genere</th>
<th>Epíteto</th>
<th>Grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiospermae</td>
<td>Betulaceae</td>
<td>Alnus</td>
<td>Acuminata</td>
<td>Latifoliadas</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Betulaceae</td>
<td>Alnus</td>
<td>Firmifolia</td>
<td>Latifoliadas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Abies</td>
<td>Religiosa</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Ericaceae</td>
<td>Arbutus</td>
<td>Xalapensis</td>
<td>Latifoliadas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Cupressaceae</td>
<td>Cupressus</td>
<td>Lindleyi</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Cupressaceae</td>
<td>Cupressus</td>
<td>Lusitánica</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>ayacahuite</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>hartwegii</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>montezumae</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>patula</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>pseudostrobus</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>teocote</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>Pseudotsuga</td>
<td>Menziesii</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Fagaceae</td>
<td>Quercus</td>
<td>Crassipes</td>
<td>Latifoliadas</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Fagaceae</td>
<td>Quercus</td>
<td>laurina</td>
<td>Latifoliadas</td>
</tr>
</tbody>
</table>

De acuerdo con la CONAFOR, las especies de coníferas que se presentan en la localidad de San Juan Cuauhtémoc son *Abies religiosa, Cupressus lindleyi, Cupressus lusitánica, Pinus ayacahuite, Pinus hartwegii, Pinus montezumae, Pinus patula, Pinus pseudostrobus, Pinus teocote* y *Pseudotsuga menziesii*, sin embargo, en los bienes comunales sólo se presentan las especies que aparecen en la tabla A5.

Tabla A5.

<table>
<thead>
<tr>
<th>División</th>
<th>Familia</th>
<th>Genere</th>
<th>Epíteto</th>
<th>Grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Abies</td>
<td>religiosa</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Ericaceae</td>
<td>Arbutus</td>
<td>xalapensis</td>
<td>Latifoliadas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Cupressaceae</td>
<td>Cupressus</td>
<td>lindleyi</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>montezumae</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>hartwegii</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>patula</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>Pinaceae</td>
<td>Pinus</td>
<td>pseudostrobus</td>
<td>Coniferas</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>Fagaceae</td>
<td>Quercus</td>
<td>taurina</td>
<td>Latifoliadas</td>
</tr>
</tbody>
</table>
De las cuales la mayoría de las especies son gimnospermas que pertenecen a la familia pinaceae, actinidiaceae y cupressaceae (coníferas) de acuerdo con la CONAFOR, las cuales se presentan en la tabla A6.

Tabla A6.

<table>
<thead>
<tr>
<th>Subclase</th>
<th>Orden</th>
<th>Familia</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Abies religiosa</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Cupressales</td>
<td>Cupressaceae</td>
<td>Cupressus lindleyi</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus montezumae</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus hartwegii</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus ayacahuite</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus patula</td>
</tr>
<tr>
<td>Pinidae</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pinus pseudostrobus</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Como se puede apreciar la mayoría de las especies pertenecen a la familia pinaceae que son árboles de importancia ecosistémica ya que producen una gran cantidad de oxígeno y biomasa, además de su gran importancia económica, ya que son usado para construir casas, papel, fuentes de resina, barnices y artesanías.

XI. Anexo B

11.1.1.1. Modelo de regresión lineal simple

11.1.1.1.1. El modelo y su aplicación

El análisis de regresión es una técnica estadística para modelar la relación entre variables con el objetivo final de poder predecir o estimar el valor de una variable a partir del valor de otra variable, siempre y cuando exista una relación entre ambas. En el modelo de regresión lineal simple existen dos variables \(x \) y \(y \), y para cada valor de la variable \(x \) le corresponde un valor de la variable \(y \), de tal manera que los valores de la variable \(y \) dependen de los valores de la variable \(x \), por lo que se dice que la variable \(y \) es una variable de respuesta o una variable dependiente, mientras que la variable \(x \) es una variable explicativa o una variable independiente. Los valores de ambas variables
forman parejas de valores que funcionan como coordenadas \(x \) y \(y \) que pueden ser graficados como puntos en un plano cartesiano (gráfica de dispersión), de esta manera se puede observar qué tipo de relación existe entre las variables (ver figura B1). Si los puntos graficados tiende a distribuirse de manera similar a una línea recta, entonces se puede usar la ecuación de la línea recta para relacionar ambas variables, aunque debido a que los valores de los puntos no se comportan exactamente como una línea recta existe un error \(\epsilon \), que está dado por la diferencia entre el valor observado \(y \) y el valor esperado; este error es de tipo estadístico dado por una variable aleatoria y explica por qué el modelo no se ajusta exactamente a los datos (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006, 2012; Reimann et al., 2008; Zar, 2010).

La ecuación de regresión lineal simple es la siguiente:

\[
y = \beta_0 + \beta_1 x + \epsilon
\]

Donde:

- \(y \) es la variable respuesta o dependiente (observada y aleatoria)
- \(x \) es la variable explicativa o independiente (observada y no aleatoria)
- \(\beta_0 \) es el intercepto en el eje \(Y \) (parámetro desconocido)
- \(\beta_1 \) es la pendiente (parámetro desconocido)
- \(\epsilon \) es un error aleatorio (no observado y aleatorio)

Si de la ecuación se despeja \(\epsilon \) entonces se tiene:

\[
\epsilon = y - (\beta_0 + \beta_1)
\]

Donde, \(\epsilon \) indica la cantidad con la que \(y \) se desvía de la media de la población de los valores de \(Y \). \(\epsilon \) sigue una distribución normal con una variancia igual a la variancia común de las subpoblaciones de valores de \(Y \).
El diagrama de dispersión sirve para observar las relaciones entre variables, para ello se grafican las variables de interés, la variable dependiente se designa como \(y \), mientras la variable independiente se designa como \(x \). Para cada valor de \(x \) le corresponde un valor en \(y \), de tal manera que las parejas de valores de \(x, y \) representan coordenadas que se grafican como puntos.

En el modelo de regresión lineal simple la variable independiente \(x \) es una variable no aleatoria y si está fija entonces se puede observar el valor correspondiente de la variable respuesta \(y \). Ahora, si \(x \) está fija, el componente aleatorio \(\varepsilon \) determina las propiedades de \(y \). Y si el promedio y la varianza de \(\varepsilon \) son 0 y \(\sigma^2 \) respectivamente, entonces, la respuesta media en cualquier valor de la variable independiente \(x \) es:

\[
E(y|x) = \mu_{y|x} = E(\beta_0 + \beta x + \varepsilon) = \beta_0 + \beta_1 x
\]
Ahora la varianza de y para cualquier valor dado de x es

\[Var(y|x) = \sigma^2_{y|x} = Var(\beta_0 + \beta_1 x + \epsilon) = \sigma^2 \]

 Así el verdadero modelo de regresión está dado por la ecuación

\[\mu_{y|x} = \beta_0 + \beta_1 x \]

Entonces, la ecuación B5 representa una línea recta de valores promedios, y la altura de la línea para cualquier valor de x no es más que el valor esperado de y para esa x que está determinado por el valor de la pendiente β_1 (el cambio de la media de y para un cambio unitario de x). Y así, la variabilidad de y para algún valor particular de x queda determinada por la varianza del error en el modelo σ^2. De esta forma, para cada valor de y hay un valor de x, y la varianza de los valores de y para cada x son iguales (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006, 2012; Reimann et al., 2008; Zar, 2010).

11.1.1.1.2. Estimación de los parámetros β_0 y β_1

Para estimar los parámetros β_0 y β_1 se puede hacer uso del método de mínimos cuadrados que minimizan la suma de cuadrados de las diferencias entre las observaciones y_i y los valores estimados en una línea recta. La ecuación B1 se considera el modelo poblacional de la regresión mientras que el modelo muestral se representa por la ecuación siguiente:

\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad i = 1, 2, \ldots, n \]

Escrita en términos de los n pares de datos $(y_i x_i)(i = 1, 2, \ldots, n)$.

Después los estimadores de mínimos cuadrados son las ecuaciones siguientes:

\[\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \]
\[
\hat{\beta}_1 = \frac{\sum_{i=1}^{n} y_i x_i - \left(\frac{\sum_{i=1}^{n} y_i (\sum_{i=1}^{n} x_i)}{n} \right)}{\sum_{i=1}^{n} x_i^2 - \left(\frac{(\sum_{i=1}^{n} x_i)^2}{n} \right)}
\]

Siendo

\[
y = \frac{1}{n} \sum_{i=1}^{n} y_i \quad y = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

Representan los promedios de \(y_i\) y \(x_i\) respectivamente. Entonces \(\hat{\beta}_0\) y \(\hat{\beta}_1\) en las ecuaciones B7 y B8, son los estimadores por mínimos cuadrados de la ordenada al origen y la pendiente, respectivamente. Después, el modelo ajustado de la regresión lineal simple está dado por la ecuación siguiente:

\[
\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i
\]

La ecuación B9 produce un estimado puntual, de la media de \(y\) para una determinada \(x\). Como el denominador de la ecuación B8, la corrección de la suma de cuadrados de \(x_i\), y el numerador es la corrección de la suma de los productos cruzados de \(x_i\) y \(y_i\), estas ecuaciones se pueden escribir en una forma más compacta, como se muestra en las ecuaciones siguientes:

\[
S_{xx} = \sum_{i=1}^{n} x_i^2 - \left(\frac{\sum_{i=1}^{n} x_i}{n} \right)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

\[
S_{xy} = \sum_{i=1}^{n} y_i x_i - \left(\frac{\sum_{i=1}^{n} y_i (\sum_{i=1}^{n} x_i)}{n} \right) = \sum_{i=1}^{n} y_i (x_i - \bar{x})
\]

Entonces, una forma simplificada de escribir la ecuación B8 es la ecuación siguiente:

\[
\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}
\]
Y la diferencia entre el valor observado y_i y el valor ajustado correspondiente \hat{y}_i se llama residual. Y el i-ésimo residual está dado por la ecuación siguiente:

\begin{equation}
(e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i), i = 1, 2, ..., n)
\end{equation}

Los residuos son importantes para ver la adecuación del modelo de regresión ajustado, y para detectar diferencias respecto a las hipótesis básicas (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006, 2012; Reimann et al., 2008; Zar, 2010).

11.1.1.1. Varianza dentro de la regresión

La importancia del modelo de regresión se puede ver a través de la varianza que hay en el modelo y su análisis, lo que sirve para probar el significado de la regresión. La variabilidad total de la variable de respuesta puede ser particionada de acuerdo con la siguiente ecuación:

\begin{equation}
\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
\end{equation}

De acuerdo con la ecuación B14 el lado izquierdo corresponde a la suma corregida de cuadrados de las observaciones (SS_T) que mide la variabilidad total en las observaciones. En la igualdad, los dos componentes que sumados dan como resultado SS_T, miden respectivamente, la cantidad de variabilidad en las observaciones y_i explicada por la línea de regresión o suma de cuadrados de la regresión (SS_R), y la variación residual o suma de cuadrados residuales (SS_{Res}) que queda sin explicar por la línea de regresión.

Entonces SS_T se calcula por la ecuación siguiente:

\begin{equation}
SS_T = \sum_{i=1}^{n} (y_i - \bar{y})^2 = SS_R + SS_{Res}
\end{equation}

Mientras que SS_R se calcula por la ecuación siguiente:

\begin{equation}
SS_R = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \hat{\beta}_1 S_{xy} = SS_T - SS_{Res}
\end{equation}
Y \(SS_{Res} \) se calcula por la ecuación siguiente:

\[
SS_{Res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = SS_T - \hat{\beta}_1 S_{xy} = SS_T - SS_R
\]

11.1.1.1.2. Coeficiente de determinación

Ahora bien, si \(SS_T \) es la medida de variabilidad de \(y \) sin considerar el efecto de la variable independiente \(x \), y \(SS_{Res} \) es la medida de variabilidad de \(y \), que queda al haber tenido \(n \) consideraciones de \(x \), entonces a la proporción de variación explicada por la variable independiente \(x \), está dada por la ecuación siguiente:

\[
R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{Res}}{SS_T}
\]

A \(R^2 \) se le conoce como coeficiente de determinación. Y ya que \(0 \leq SS_{Res} \leq SS_T \), entonces \(0 \leq R^2 \leq 1 \). Entonces, valores cercanos a 1 implican que la mayor parte de la variabilidad de \(y \) está explicada por el modelo de regresión (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006, 2012; Reimann et al., 2008; Zar, 2010).

11.1.1.1.3. Estimación de \(\sigma^2 \)

Para estimar \(\sigma^2 \), se necesita calcular \(SS_{Res} \) mediante la ecuación B20, y teniendo en cuenta a \(SS_T \) se ve que \(SS_{Res} \) tiene \(n - 2 \) grados de libertad asociados con los estimados \(\hat{\beta}_0 \) y \(\hat{\beta}_1 \) que se usan para obtener \(\hat{y}_i \). Entonces el valor esperado de \(SS_{Res} \) es \(E(SS_{Res}) = (n - 2)\sigma^2 \), por lo que un estimador insesgado de \(\sigma^2 \) es la ecuación siguiente:

\[
\hat{\sigma}^2 = \frac{SS_{Res}}{n - 2} = MS_{Res}
\]

Donde \(MS_{Res} \) se le conoce como el cuadrado medio residual. Y la raíz cuadrada de \(\hat{\sigma}^2 \) se le conoce a veces como el error estándar de la regresión \(\sigma \), el cual tiene las mismas unidades que
la variable de respuesta y (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006, 2012; Reimann et al., 2008; Zar, 2010).

11.1.1.1.4. Intervalos de confianza de β_1 y σ^2.

Además de los estimados puntuales de β_1 y σ^2, también es necesario conocer los estimados de sus intervalos de confianza. El ancho de dichos intervalos es una medida de la calidad general de la recta de regresión. El intervalo de confianza de $100(1 - \alpha)$ para β_1 se calcula por la ecuación siguiente:

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \cdot se(\hat{\beta}_1) \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2, n-2} \cdot se(\hat{\beta}_1)$$

Donde t está con $n - 2$ grados de libertad. Después, para calcular el intervalo de confianza de $100(1 - \alpha)$ por ciento para σ^2, con los errores distribuidos en forma normal e independiente, se usa la ecuación siguiente:

$$\frac{(n - 2)MS_{Res}}{\chi^2_{\alpha/2, n-2}} \leq \sigma^2 \leq \frac{(n - 2)MS_{Res}}{\chi^2_{1-\alpha/2, n-2}}$$

Y ya que los intervalos de confianza tienen la interpretación usual de frecuencia, se puede decir que si se tomaran muestras repetidas del mismo tamaño a los mismos valores de x, y se hicieran intervalos de confianza por ejemplo al 95% para cada muestra, entonces el 95% de los intervalos contemplarían el verdadero valor de β_1 y de σ^2 (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006, 2012; Reimann et al., 2008; Zar, 2010).

11.1.1.1.5. Intervalos de confianza de la respuesta media

Una aplicación del modelo de regresión es estimar la respuesta media $E(y)$ para un determinado valor de la variable independiente x (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006, 2012; Reimann et al., 2008; Zar, 2010).
Entonces sea x_0 el valor de la variable independiente para la que se desea estimar la respuesta media, es decir, $E(y|x_0)$, su estimador insesgado se calcula por la ecuación siguiente:

$$E(y|x_0) = \hat{\mu}_{y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$$ (B22)

Para obtener un intervalo de confianza de $100(1 - \alpha)$ por ciento para $E(y|x_0)$, dado que $\hat{\mu}_{y|x_0}$ es una variable aleatoria normalmente distribuida al ser una combinación lineal de las observaciones y_i, su varianza se calcula por la ecuación siguiente:

$$\text{Var}(\hat{\mu}_{y|x_0}) = \text{Var}(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \text{Var}[\bar{y} + \hat{\beta}_1 (x_0 - \bar{x})] = \frac{\sigma^2}{n} + \frac{\sigma^2 (x_0 - \bar{x})^2}{S_{xx}} = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]$$ (B23)

Entonces el intervalo de confianza de $100(1 - \alpha)$ por ciento para la respuesta media en el punto $x = x_0$ es

$$\hat{\mu}_{y|x_0} - t_{\alpha/2,n-2} \sqrt{\frac{\text{MS}_{\text{Res}}}{n} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)} \leq E(y|x_0) \leq \hat{\mu}_{y|x_0} + t_{\alpha/2,n-2} \sqrt{\frac{\text{MS}_{\text{Res}}}{n} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$ (B24)

Con t y $n - 2$ grados de libertad.

11.1.1.1.6. **Predicciones de nuevas observaciones**

El modelo de regresión también sirve para poder predecir los valores de la variable dependiente y a partir de nuevas observaciones de la variable independiente x. Si x_0 es el valor de interés de la variable independiente, entonces se establece la ecuación siguiente:

$$\hat{y}_0 = \hat{\beta}_1 + \hat{\beta}_0 x_0$$ (B25)

Que es el estimador puntual para el valor de \hat{y}_0 dado un nuevo valor de x_0. Así el intervalo de confianza establecido en la ecuación B24 no es adecuado, ya que se trata de un intervalo de confianza para la media de y y no es una declaración de probabilidad para observaciones futuras (Chambers, Cleveland, Kleiner, y Tukey, 1983; Daniel, 2005; Montgomery, Peck, y Geoffrey, 2006,
Entonces un intervalo de predicción para las observaciones futuras de \(\hat{y}_0 \) dado que la variable

\[
\psi = y_0 - \hat{y}_0
\]

Tiene una distribución normal, media 0 y varianza dada por la ecuación siguiente:

\[
Var(\psi) = Var(y_0 - \hat{y}_0) = \sigma^2\left[1 + \frac{1}{n}\left(\frac{x_0 - \bar{x}}{S_{xx}}\right)^2\right]
\]

Debido a que la observación futura de \(y_0 \) es independiente de \(\hat{y}_0 \). Si se usa \(\hat{y}_0 \) para predecir \(y_0 \), entonces el error estándar de \(\psi = y_1 - \hat{y}_0 \) es el estadístico adecuado para hacer un intervalo de predicción de \(100(1 - \alpha)\% \) de confianza para una observación futura de \(x_0 \), y está dado por la ecuación siguiente:

\[
\hat{y}_0 - t_{\alpha/2,n-2} \sqrt{MS_{Res}\left(1 + \frac{1}{n}\frac{(x_0 - \bar{x})^2}{S_{xx}}\right)} \leq y_0 \leq \hat{y}_0 - t_{\alpha/2,n-2} \sqrt{MS_{Res}\left(1 + \frac{1}{n}\frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}
\]

Así el intervalo de predicción siempre es más amplio que el intervalo de confianza para la respuesta media dado por la ecuación.

11.1.1.2. Regresión no lineal

La forma más común de ecuaciones alométricas para estimar la biomasa es la ecuación potencial (Nickless, Scholes, Archibald, 2011). La cual se expresa en la ecuación siguiente:

\[
y = \beta_0 x^{\beta_1} e^e
\]

Donde:

\(y \) es la biomasa

\(x \) el diámetro a la altura del pecho

\(\beta_0 \) el intercepto con el eje \(Y \)

\(\beta_1 \) la pendiente
Ya que calcular los parámetros β_0 y β_1 de manera directa lleva muchas complicaciones, lo mejor es linealizar la ecuación aplicando logaritmo a ambos lados (Nickless, Scholes, Archibald, 2011; Stow, Reckhow, y Qian, 2006). Al aplicar logaritmo se tiene la ecuación siguiente:

\[
\ln(y) = \ln\beta_0 + \beta_1 \ln(x)
\]

Aunque

\[
\ln(y) = \ln\beta_0 + \beta_1 \ln(x) + \epsilon
\]

Donde:

ϵ es un error aleatorio con distribución normal.

El modelo anterior también se puede escribir como la ecuación siguiente:

\[
\ln(y_i) = \beta_0^* + \beta_1^* \ln(x_i) + \epsilon_i^*
\]

Donde los * representan los parámetros de regresión logarítmicos, por lo que la relación modelada por la regresión ahora se aplica a los logaritmos de las variables. Entonces se asume que $\ln(y_i)$ tiene una distribución normal con media $\mu^* = \beta_0^* + \beta_1^* \ln(x_i)$ y varianza σ^2 (Nickless, Scholes, Archibald, 2011; Stow, Reckhow, y Qian, 2006). Después, el ajuste se hace aplicando las técnicas de regresión lineal simple para obtener los parámetros de la regresión, una vez obtenidos los valores se aplica exponencial para obtener los parámetros finales (Nickless, Scholes, Archibald, 2011). Así se obtiene la ecuación siguiente:

\[
y_i = e^{\beta_0 + \beta_1 \ln(DAP)}
\]

De esta forma se obtiene una ecuación alométrica para estimar la biomasa de un árbol.

11.1.1.3. Problemas del uso de ecuaciones alométricas existentes
Las ecuaciones alométricas permiten el conocimiento de la biomasa forestal, en la parte aérea, y es por eso se recomienda que sean generadas a partir de un muestreo en la zona de estudio, aunque a veces se presentan ciertos inconvenientes como el costo en tiempo y en dinero, además en ciertas zonas como las áreas naturales protegidas es necesario contar con los permisos correspondientes para la tala de árboles. Sin embargo, está permitido el uso de ecuaciones alométricas existentes para realizar estimaciones de la biomasa en zonas donde no se hayan desarrollado dichas ecuaciones alométricas y no se puedan cubrir los costos del método destructivo.

Ya que las ecuaciones alométricas reportadas se generaron en zonas diferentes a las de sus posibles aplicaciones, es claro que las estimaciones de biomasa hechas por ecuaciones alométricas existentes tendrán un sesgo que variará de acuerdo con la ecuación que se use. Debido a esto, se recomienda usar ecuaciones alométricas para cada especie de árbol que se quiera estudiar y de preferencia que las ecuaciones pertenezcan a una misma región geográficas o a un ecosistema similar, con la finalidad de no aumentar demasiado el error de estimación.

Independientemente del error que pueda haber entre la estimación hecha por una u otra ecuación, es necesario conocer el cuadrado medio residual o error cuadrático medio \(\sigma^2 \) para conocer el error estándar de la regresión, los intervalos de confianza y la variación de las estimaciones de biomasa. Sin embargo, cuando se usan ecuaciones alométricas existentes, es frecuente no reportar el cuadrado medio residual, y es prácticamente imposible conocer su valor, ya que con frecuencia sólo se suele reportar los valores de \(\beta_0, \beta_1, R^2 \) y la \(n \) muestral (Wayson et al., 2015). Y ya que los valores de \(SS_R, SS_{Res} \) y \(SS_T \) no se reportan en la mayoría de las publicaciones de ecuaciones alométricas, entonces no se pueden obtener el valor de \(MS_{Res} \), ni los intervalos de confianza, por eso ante tal situación, la simulación de valores aproximados a los originales podría dar una idea del valor de \(MS_{Res} \) y de los intervalos de confianza.

XII. Anexo C

12.1. Parcela 1

<table>
<thead>
<tr>
<th>Árbol</th>
<th>Especie</th>
<th>Circunferencia (cm)</th>
<th>Diámetro</th>
<th>Biomasa Predicha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abies religiosa</td>
<td>144</td>
<td>45.83662361</td>
<td>718.7419118</td>
</tr>
<tr>
<td>2</td>
<td>Abies religiosa</td>
<td>206</td>
<td>65.57183655</td>
<td>1837.972563</td>
</tr>
<tr>
<td>3</td>
<td>Abies religiosa</td>
<td>33</td>
<td>10.50422624</td>
<td>15.09230935</td>
</tr>
<tr>
<td>4</td>
<td>Abies religiosa</td>
<td>55</td>
<td>17.50704374</td>
<td>57.60891663</td>
</tr>
<tr>
<td>Núm.</td>
<td>Especie</td>
<td>N°</td>
<td>Circunferencia (cm)</td>
<td>Diámetro</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-----</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>5</td>
<td>Abies religiosa</td>
<td>5</td>
<td>1.591549431</td>
<td>0.107087652</td>
</tr>
<tr>
<td>6</td>
<td>Abies religiosa</td>
<td>39</td>
<td>12.41408556</td>
<td>23.38830686</td>
</tr>
<tr>
<td>7</td>
<td>Abies religiosa</td>
<td>9</td>
<td>2.864788976</td>
<td>0.500169852</td>
</tr>
<tr>
<td>8</td>
<td>Abies religiosa</td>
<td>9</td>
<td>2.864788976</td>
<td>0.500169852</td>
</tr>
<tr>
<td>9</td>
<td>Abies religiosa</td>
<td>17</td>
<td>5.411268065</td>
<td>2.650871807</td>
</tr>
<tr>
<td>10</td>
<td>Abies religiosa</td>
<td>19</td>
<td>6.047887837</td>
<td>3.548572969</td>
</tr>
<tr>
<td>11</td>
<td>Abies religiosa</td>
<td>12</td>
<td>3.819718634</td>
<td>1.063489277</td>
</tr>
<tr>
<td>12</td>
<td>Abies religiosa</td>
<td>25</td>
<td>7.957747155</td>
<td>7.287616832</td>
</tr>
<tr>
<td>13</td>
<td>Abies religiosa</td>
<td>210</td>
<td>66.8450761</td>
<td>1933.035887</td>
</tr>
<tr>
<td>14</td>
<td>Abies religiosa</td>
<td>15</td>
<td>4.774648293</td>
<td>1.909200417</td>
</tr>
<tr>
<td>15</td>
<td>Abies religiosa</td>
<td>14</td>
<td>4.456338407</td>
<td>1.59324167</td>
</tr>
<tr>
<td>16</td>
<td>Abies religiosa</td>
<td>22</td>
<td>7.002817496</td>
<td>5.212036374</td>
</tr>
<tr>
<td>17</td>
<td>Abies religiosa</td>
<td>85</td>
<td>27.05634033</td>
<td>180.3993055</td>
</tr>
<tr>
<td>18</td>
<td>Abies religiosa</td>
<td>50</td>
<td>15.91549431</td>
<td>44.86931043</td>
</tr>
<tr>
<td>19</td>
<td>Abies religiosa</td>
<td>175</td>
<td>55.70423008</td>
<td>1198.422797</td>
</tr>
<tr>
<td>20</td>
<td>Abies religiosa</td>
<td>233</td>
<td>74.16620348</td>
<td>2538.619606</td>
</tr>
<tr>
<td>21</td>
<td>Abies religiosa</td>
<td>122</td>
<td>38.83380611</td>
<td>465.336235</td>
</tr>
<tr>
<td>22</td>
<td>Abies religiosa</td>
<td>34</td>
<td>10.82253613</td>
<td>16.32121896</td>
</tr>
<tr>
<td>23</td>
<td>Abies religiosa</td>
<td>92</td>
<td>29.28450953</td>
<td>222.002231</td>
</tr>
<tr>
<td>24</td>
<td>Abies religiosa</td>
<td>212</td>
<td>67.48169587</td>
<td>1981.684069</td>
</tr>
<tr>
<td>25</td>
<td>Abies religiosa</td>
<td>70</td>
<td>22.28169203</td>
<td>108.4245908</td>
</tr>
<tr>
<td>26</td>
<td>Abies religiosa</td>
<td>95</td>
<td>30.23943919</td>
<td>241.4904024</td>
</tr>
<tr>
<td>27</td>
<td>Abies religiosa</td>
<td>88</td>
<td>28.01126998</td>
<td>197.5764454</td>
</tr>
<tr>
<td>28</td>
<td>Abies religiosa</td>
<td>43</td>
<td>13.68732511</td>
<td>30.2127724</td>
</tr>
<tr>
<td>29</td>
<td>Abies religiosa</td>
<td>210</td>
<td>66.8450761</td>
<td>1933.035887</td>
</tr>
<tr>
<td>30</td>
<td>Abies religiosa</td>
<td>20</td>
<td>6.366197724</td>
<td>4.059449331</td>
</tr>
<tr>
<td>31</td>
<td>Abies religiosa</td>
<td>183</td>
<td>58.25070917</td>
<td>1347.457674</td>
</tr>
</tbody>
</table>

12.2. Parcela 2

<table>
<thead>
<tr>
<th>Arbol</th>
<th>Especie</th>
<th>Circunferencia (cm)</th>
<th>Diámetro</th>
<th>Biomasa predicha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Página 65 de 79
<table>
<thead>
<tr>
<th></th>
<th>especie</th>
<th>muestreo</th>
<th>latitud</th>
<th>longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pinus montezumae</td>
<td>283</td>
<td>90.08169779</td>
<td>3154.378064</td>
</tr>
<tr>
<td>2</td>
<td>Abies religiosa</td>
<td>72</td>
<td>22.91831181</td>
<td>116.7371552</td>
</tr>
<tr>
<td>3</td>
<td>Pinus montezumae</td>
<td>132</td>
<td>42.01690498</td>
<td>842.5355044</td>
</tr>
<tr>
<td>4</td>
<td>Abies religiosa</td>
<td>140</td>
<td>44.56338407</td>
<td>667.5620759</td>
</tr>
<tr>
<td>5</td>
<td>Pinus montezumae</td>
<td>180</td>
<td>57.29577951</td>
<td>1441.285759</td>
</tr>
<tr>
<td>6</td>
<td>Abies religiosa</td>
<td>137</td>
<td>43.60845441</td>
<td>630.7006789</td>
</tr>
<tr>
<td>7</td>
<td>Abies religiosa</td>
<td>40</td>
<td>12.73239545</td>
<td>24.99372517</td>
</tr>
<tr>
<td>8</td>
<td>Abies religiosa</td>
<td>83</td>
<td>26.41972055</td>
<td>169.4802222</td>
</tr>
<tr>
<td>9</td>
<td>Abies religiosa</td>
<td>98</td>
<td>31.19436885</td>
<td>262.0029541</td>
</tr>
<tr>
<td>10</td>
<td>Abies religiosa</td>
<td>182</td>
<td>57.93239929</td>
<td>1328.235411</td>
</tr>
<tr>
<td>11</td>
<td>Abies religiosa</td>
<td>43</td>
<td>13.68732511</td>
<td>30.2127724</td>
</tr>
<tr>
<td>12</td>
<td>Abies religiosa</td>
<td>30</td>
<td>9.549296586</td>
<td>11.75480382</td>
</tr>
<tr>
<td>13</td>
<td>Abies religiosa</td>
<td>70</td>
<td>22.28169203</td>
<td>108.4245908</td>
</tr>
<tr>
<td>14</td>
<td>Abies religiosa</td>
<td>41</td>
<td>13.05070533</td>
<td>26.66559121</td>
</tr>
<tr>
<td>15</td>
<td>Abies religiosa</td>
<td>33</td>
<td>10.50422624</td>
<td>15.09230935</td>
</tr>
<tr>
<td>16</td>
<td>Abies religiosa</td>
<td>19</td>
<td>6.047887837</td>
<td>3.548572969</td>
</tr>
<tr>
<td>17</td>
<td>Pinus montezumae</td>
<td>41</td>
<td>13.05070533</td>
<td>111.3290928</td>
</tr>
<tr>
<td>18</td>
<td>Pinus montezumae</td>
<td>271</td>
<td>86.26197916</td>
<td>2926.452334</td>
</tr>
<tr>
<td>19</td>
<td>Pinus montezumae</td>
<td>79</td>
<td>25.14648101</td>
<td>346.4730512</td>
</tr>
<tr>
<td>20</td>
<td>Abies religiosa</td>
<td>5</td>
<td>1.591549431</td>
<td>0.107087652</td>
</tr>
<tr>
<td>21</td>
<td>Pinus montezumae</td>
<td>60</td>
<td>19.09859317</td>
<td>215.2077836</td>
</tr>
<tr>
<td>22</td>
<td>Abies religiosa</td>
<td>47</td>
<td>14.96056465</td>
<td>38.14916039</td>
</tr>
<tr>
<td>23</td>
<td>Pinus montezumae</td>
<td>93</td>
<td>29.60281942</td>
<td>459.5367422</td>
</tr>
<tr>
<td>24</td>
<td>Pinus montezumae</td>
<td>97</td>
<td>30.87605896</td>
<td>494.2855862</td>
</tr>
<tr>
<td>25</td>
<td>Pinus montezumae</td>
<td>88</td>
<td>28.01126998</td>
<td>417.6149165</td>
</tr>
<tr>
<td>26</td>
<td>Pinus montezumae</td>
<td>150</td>
<td>47.74648293</td>
<td>1051.206773</td>
</tr>
<tr>
<td>27</td>
<td>Pinus montezumae</td>
<td>128</td>
<td>40.74366543</td>
<td>798.8317674</td>
</tr>
<tr>
<td>28</td>
<td>Pinus montezumae</td>
<td>47</td>
<td>14.96056465</td>
<td>141.0199684</td>
</tr>
<tr>
<td>29</td>
<td>Abies religiosa</td>
<td>80</td>
<td>25.46479089</td>
<td>153.8844919</td>
</tr>
<tr>
<td>30</td>
<td>Abies religiosa</td>
<td>85</td>
<td>27.05634033</td>
<td>180.3993055</td>
</tr>
<tr>
<td>Árbol</td>
<td>Especie</td>
<td>Circunferencia (cm)</td>
<td>Diámetro</td>
<td>Biomasa Predicha</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>Abies religiosa</td>
<td>53</td>
<td>16.87042397</td>
<td>52.27652227</td>
</tr>
<tr>
<td>2</td>
<td>Pinus montezumae</td>
<td>230</td>
<td>73.21127382</td>
<td>2203.044191</td>
</tr>
<tr>
<td>3</td>
<td>Abies religiosa</td>
<td>47</td>
<td>14.96056465</td>
<td>38.14916039</td>
</tr>
<tr>
<td>4</td>
<td>Abies religiosa</td>
<td>229</td>
<td>72.89296394</td>
<td>2425.925504</td>
</tr>
<tr>
<td>5</td>
<td>Pinus montezumae</td>
<td>140</td>
<td>44.56338407</td>
<td>932.8721125</td>
</tr>
<tr>
<td>6</td>
<td>Pinus montezumae</td>
<td>117</td>
<td>37.24225668</td>
<td>683.7620401</td>
</tr>
<tr>
<td>7</td>
<td>Abies religiosa</td>
<td>40</td>
<td>12.73239545</td>
<td>24.99372517</td>
</tr>
<tr>
<td>8</td>
<td>Abies religiosa</td>
<td>37</td>
<td>11.77746579</td>
<td>20.37264901</td>
</tr>
<tr>
<td>9</td>
<td>Abies religiosa</td>
<td>40</td>
<td>12.73239545</td>
<td>24.99372517</td>
</tr>
<tr>
<td>10</td>
<td>Abies religiosa</td>
<td>130</td>
<td>41.3802852</td>
<td>549.663195</td>
</tr>
<tr>
<td>11</td>
<td>Abies religiosa</td>
<td>70</td>
<td>22.28169203</td>
<td>108.4245908</td>
</tr>
<tr>
<td>12</td>
<td>Abies religiosa</td>
<td>110</td>
<td>35.01408748</td>
<td>354.6937803</td>
</tr>
<tr>
<td>13</td>
<td>Abies religiosa</td>
<td>115</td>
<td>36.60563691</td>
<td>398.5435125</td>
</tr>
</tbody>
</table>

12.3. Parcela 3
<table>
<thead>
<tr>
<th></th>
<th>Árbol</th>
<th>Espécie</th>
<th>Circunferencia (cm)</th>
<th>Diámetro</th>
<th>Biomasa predicha</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Abies religiosa</td>
<td>40</td>
<td>12.73239545</td>
<td>24.99372517</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pinus montezumae</td>
<td>84</td>
<td>26.73803044</td>
<td>385.3045551</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Abies religiosa</td>
<td>198</td>
<td>63.02535746</td>
<td>1656.653524</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Abies religiosa</td>
<td>157</td>
<td>49.97465213</td>
<td>901.5779626</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Abies religiosa</td>
<td>99</td>
<td>31.5126783</td>
<td>269.0715768</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pinus montezumae</td>
<td>122</td>
<td>38.83380611</td>
<td>735.1296596</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Abies religiosa</td>
<td>87</td>
<td>27.6929601</td>
<td>191.7432302</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Abies religiosa</td>
<td>73</td>
<td>23.23662169</td>
<td>121.0367063</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Abies religiosa</td>
<td>47</td>
<td>14.96056465</td>
<td>38.14916039</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Abies religiosa</td>
<td>76</td>
<td>24.19155135</td>
<td>134.5183309</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Pinus montezumae</td>
<td>118</td>
<td>37.56056657</td>
<td>693.9097308</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Abies religiosa</td>
<td>49</td>
<td>15.59718442</td>
<td>42.55418949</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Abies religiosa</td>
<td>33</td>
<td>10.50422624</td>
<td>15.09230935</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Abies religiosa</td>
<td>32</td>
<td>10.18591636</td>
<td>13.92235119</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Abies religiosa</td>
<td>43</td>
<td>13.68732511</td>
<td>30.2127724</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Abies religiosa</td>
<td>47</td>
<td>14.96056465</td>
<td>38.14916039</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Abies religiosa</td>
<td>123</td>
<td>39.152116</td>
<td>475.4045592</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Pinus pseudostrobus</td>
<td>247</td>
<td>78.62254189</td>
<td>3897.566806</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Pinus pseudostrobus</td>
<td>245</td>
<td>77.98592212</td>
<td>3823.358662</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Pinus pseudostrobus</td>
<td>207</td>
<td>65.89014644</td>
<td>2566.717711</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Pinus pseudostrobus</td>
<td>235</td>
<td>74.80282325</td>
<td>3464.598237</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Pinus pseudostrobus</td>
<td>167</td>
<td>53.15775099</td>
<td>1544.845018</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Abies religiosa</td>
<td>230</td>
<td>73.21127382</td>
<td>2453.802525</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Abies religiosa</td>
<td>105</td>
<td>33.42253805</td>
<td>313.9612518</td>
<td></td>
</tr>
</tbody>
</table>

12.4. Parcela 4

<table>
<thead>
<tr>
<th>Árbol</th>
<th>Espécie</th>
<th>Circunferencia (cm)</th>
<th>Diámetro</th>
<th>Biomasa predicha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pinus patula</td>
<td>28</td>
<td>8.912676813</td>
<td>34.24130662</td>
</tr>
<tr>
<td>2</td>
<td>Pinus montezumae</td>
<td>130</td>
<td>41.3802852</td>
<td>820.5607611</td>
</tr>
</tbody>
</table>

Página 68 de 79
<table>
<thead>
<tr>
<th></th>
<th>Especie</th>
<th>Número</th>
<th>Longitud</th>
<th>Ancho</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Abies religiosa</td>
<td>150</td>
<td>47.74648293</td>
<td>799.9475645</td>
</tr>
<tr>
<td>4</td>
<td>Abies religiosa</td>
<td>20</td>
<td>6.366197724</td>
<td>4.059449331</td>
</tr>
<tr>
<td>5</td>
<td>Abies religiosa</td>
<td>115</td>
<td>36.60563691</td>
<td>398.5435125</td>
</tr>
<tr>
<td>6</td>
<td>Pinus patula</td>
<td>28</td>
<td>8.912676813</td>
<td>34.24130662</td>
</tr>
<tr>
<td>7</td>
<td>Pinus patula</td>
<td>95</td>
<td>30.23943919</td>
<td>406.9737309</td>
</tr>
<tr>
<td>8</td>
<td>Pinus patula</td>
<td>25</td>
<td>7.957747155</td>
<td>27.21612229</td>
</tr>
<tr>
<td>9</td>
<td>Pinus patula</td>
<td>95</td>
<td>30.23943919</td>
<td>406.9737309</td>
</tr>
<tr>
<td>10</td>
<td>Pinus patula</td>
<td>98</td>
<td>31.19436885</td>
<td>433.4356989</td>
</tr>
<tr>
<td>11</td>
<td>Pinus montezumae</td>
<td>175</td>
<td>55.70423008</td>
<td>1372.689696</td>
</tr>
<tr>
<td>12</td>
<td>Pinus montezumae</td>
<td>62</td>
<td>19.73521294</td>
<td>227.776037</td>
</tr>
<tr>
<td>13</td>
<td>Pinus montezumae</td>
<td>72</td>
<td>22.91831181</td>
<td>295.06651</td>
</tr>
<tr>
<td>14</td>
<td>Pinus patula</td>
<td>77</td>
<td>24.50986124</td>
<td>265.8967646</td>
</tr>
<tr>
<td>15</td>
<td>Pinus montezumae</td>
<td>158</td>
<td>50.29296202</td>
<td>1150.136465</td>
</tr>
<tr>
<td>16</td>
<td>Pinus patula</td>
<td>42</td>
<td>13.36901522</td>
<td>77.86479687</td>
</tr>
<tr>
<td>17</td>
<td>Pinus patula</td>
<td>32</td>
<td>10.18591636</td>
<td>44.8798991</td>
</tr>
<tr>
<td>18</td>
<td>Pinus patula</td>
<td>65</td>
<td>20.6901426</td>
<td>188.6395693</td>
</tr>
<tr>
<td>19</td>
<td>Pinus montezumae</td>
<td>52</td>
<td>16.55211408</td>
<td>167.9888936</td>
</tr>
<tr>
<td>20</td>
<td>Pinus patula</td>
<td>87</td>
<td>27.6929601</td>
<td>340.5319492</td>
</tr>
<tr>
<td>21</td>
<td>Pinus patula</td>
<td>88</td>
<td>28.01126998</td>
<td>348.50948</td>
</tr>
<tr>
<td>22</td>
<td>Pinus patula</td>
<td>15</td>
<td>4.774648293</td>
<td>9.667695578</td>
</tr>
<tr>
<td>23</td>
<td>Pinus montezumae</td>
<td>25</td>
<td>7.957747155</td>
<td>47.28420783</td>
</tr>
<tr>
<td>24</td>
<td>Pinus patula</td>
<td>61</td>
<td>19.41690306</td>
<td>165.860852</td>
</tr>
<tr>
<td>25</td>
<td>Pinus patula</td>
<td>102</td>
<td>32.46760839</td>
<td>470.0321346</td>
</tr>
<tr>
<td>26</td>
<td>Pinus patula</td>
<td>53</td>
<td>16.87042397</td>
<td>124.7493177</td>
</tr>
<tr>
<td>27</td>
<td>Pinus patula</td>
<td>67</td>
<td>21.32676237</td>
<td>200.5857715</td>
</tr>
<tr>
<td>28</td>
<td>Pinus montezumae</td>
<td>37</td>
<td>11.77746579</td>
<td>93.20462088</td>
</tr>
<tr>
<td>29</td>
<td>Pinus patula</td>
<td>110</td>
<td>35.01408748</td>
<td>547.7353331</td>
</tr>
<tr>
<td>30</td>
<td>Pinus patula</td>
<td>56</td>
<td>17.82535363</td>
<td>139.4724002</td>
</tr>
<tr>
<td>31</td>
<td>Pinus patula</td>
<td>25</td>
<td>7.957747155</td>
<td>27.21612229</td>
</tr>
<tr>
<td>32</td>
<td>Pinus patula</td>
<td>62</td>
<td>19.73521294</td>
<td>171.4164157</td>
</tr>
<tr>
<td></td>
<td>Especie</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-----</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>33</td>
<td>Pinus montezumae</td>
<td>60</td>
<td>19.09859317</td>
<td>215.2077836</td>
</tr>
<tr>
<td>34</td>
<td>Pinus patula</td>
<td>57</td>
<td>18.14366351</td>
<td>144.5649787</td>
</tr>
<tr>
<td>35</td>
<td>Pinus patula</td>
<td>66</td>
<td>21.00845249</td>
<td>194.5662355</td>
</tr>
<tr>
<td>36</td>
<td>Pinus patula</td>
<td>82</td>
<td>26.10141067</td>
<td>302.0468797</td>
</tr>
<tr>
<td>37</td>
<td>Abies religiosa</td>
<td>16</td>
<td>5.092958179</td>
<td>2.261250729</td>
</tr>
<tr>
<td>38</td>
<td>Pinus patula</td>
<td>67</td>
<td>21.32676237</td>
<td>200.5857715</td>
</tr>
<tr>
<td>39</td>
<td>Pinus montezumae</td>
<td>180</td>
<td>57.29577951</td>
<td>1441.285759</td>
</tr>
<tr>
<td>40</td>
<td>Pinus montezumae</td>
<td>80</td>
<td>25.46479089</td>
<td>354.0997976</td>
</tr>
<tr>
<td>41</td>
<td>Pinus montezumae</td>
<td>75</td>
<td>23.87324146</td>
<td>316.6709597</td>
</tr>
<tr>
<td>42</td>
<td>Pinus montezumae</td>
<td>95</td>
<td>30.23943919</td>
<td>476.7774708</td>
</tr>
<tr>
<td>43</td>
<td>Pinus patula</td>
<td>25</td>
<td>7.957747155</td>
<td>27.21612229</td>
</tr>
<tr>
<td>44</td>
<td>Pinus patula</td>
<td>54</td>
<td>17.18873385</td>
<td>129.5646137</td>
</tr>
<tr>
<td>45</td>
<td>Pinus montezumae</td>
<td>163</td>
<td>51.88451145</td>
<td>1213.865486</td>
</tr>
<tr>
<td>46</td>
<td>Pinus patula</td>
<td>60</td>
<td>19.09859317</td>
<td>160.3979669</td>
</tr>
<tr>
<td>47</td>
<td>Pinus patula</td>
<td>46</td>
<td>14.64225476</td>
<td>93.62507445</td>
</tr>
<tr>
<td>48</td>
<td>Abies religiosa</td>
<td>41</td>
<td>13.05070533</td>
<td>26.66559121</td>
</tr>
<tr>
<td>49</td>
<td>Abies religiosa</td>
<td>92</td>
<td>29.28450953</td>
<td>222.002231</td>
</tr>
<tr>
<td>50</td>
<td>Pinus patula</td>
<td>30</td>
<td>9.549296586</td>
<td>39.37865812</td>
</tr>
<tr>
<td>51</td>
<td>Pinus patula</td>
<td>65</td>
<td>20.6901426</td>
<td>188.6395693</td>
</tr>
<tr>
<td>52</td>
<td>Pinus patula</td>
<td>100</td>
<td>31.83098862</td>
<td>451.5461464</td>
</tr>
<tr>
<td>53</td>
<td>Pinus patula</td>
<td>26</td>
<td>8.276057041</td>
<td>29.46718765</td>
</tr>
<tr>
<td>54</td>
<td>Abies religiosa</td>
<td>25</td>
<td>7.957747155</td>
<td>7.287616832</td>
</tr>
<tr>
<td>55</td>
<td>Pinus montezumae</td>
<td>60</td>
<td>19.09859317</td>
<td>215.2077836</td>
</tr>
<tr>
<td>56</td>
<td>Pinus patula</td>
<td>46</td>
<td>14.64225476</td>
<td>93.62507445</td>
</tr>
<tr>
<td>57</td>
<td>Pinus patula</td>
<td>115</td>
<td>36.60563691</td>
<td>599.3579682</td>
</tr>
<tr>
<td>58</td>
<td>Pinus patula</td>
<td>37</td>
<td>11.77746579</td>
<td>60.2289688</td>
</tr>
<tr>
<td>59</td>
<td>Pinus montezumae</td>
<td>185</td>
<td>58.88732894</td>
<td>1511.289037</td>
</tr>
<tr>
<td>60</td>
<td>Pinus montezumae</td>
<td>38</td>
<td>12.09577567</td>
<td>97.6080305</td>
</tr>
<tr>
<td>61</td>
<td>Pinus montezumae</td>
<td>95</td>
<td>30.23943919</td>
<td>476.7774708</td>
</tr>
<tr>
<td>62</td>
<td>Pinus montezumae</td>
<td>85</td>
<td>27.05634033</td>
<td>393.2790464</td>
</tr>
<tr>
<td></td>
<td>Pinus montezumae</td>
<td>90</td>
<td>28.64788976</td>
<td>434.1803689</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>64</td>
<td>Pinus patula</td>
<td>50</td>
<td>15.91549431</td>
<td>110.8572737</td>
</tr>
<tr>
<td>65</td>
<td>Pinus patula</td>
<td>50</td>
<td>15.91549431</td>
<td>110.8572737</td>
</tr>
<tr>
<td>66</td>
<td>Pinus patula</td>
<td>13</td>
<td>4.13802852</td>
<td>7.234370425</td>
</tr>
<tr>
<td>67</td>
<td>Pinus patula</td>
<td>70</td>
<td>22.28169203</td>
<td>219.2019615</td>
</tr>
<tr>
<td>68</td>
<td>Pinus patula</td>
<td>72</td>
<td>22.91831181</td>
<td>232.077603</td>
</tr>
<tr>
<td>69</td>
<td>Pinus patula</td>
<td>66</td>
<td>21.00845249</td>
<td>194.5662355</td>
</tr>
<tr>
<td>70</td>
<td>Pinus patula</td>
<td>17</td>
<td>5.411268065</td>
<td>12.45835871</td>
</tr>
<tr>
<td>71</td>
<td>Pinus montezumae</td>
<td>150</td>
<td>47.74648293</td>
<td>1051.206773</td>
</tr>
<tr>
<td>72</td>
<td>Pinus montezumae</td>
<td>50</td>
<td>15.91549431</td>
<td>156.9625443</td>
</tr>
<tr>
<td>73</td>
<td>Pinus montezumae</td>
<td>47</td>
<td>14.96056465</td>
<td>141.0199684</td>
</tr>
<tr>
<td>74</td>
<td>Pinus montezumae</td>
<td>53</td>
<td>16.87042397</td>
<td>173.6201909</td>
</tr>
</tbody>
</table>

XIII. Literatura citada

